scholarly journals Safety of Pedicle Screws in Adolescent Idiopathic Scoliosis Surgery

2017 ◽  
Vol 11 (6) ◽  
pp. 998-1007 ◽  
Author(s):  
Chris Yin Wei Chan ◽  
Mun Keong Kwan

<p>To review existing publications on the safety of pedicle screw insertions in adolescent idiopathic scoliosis (AIS). Despite having increased risk for neurological and visceral injuries, the use of pedicle screws have led to increased correction rates in scoliosis surgery. A review was performed on topics pertinent to pedicle screw insertion in AIS, which included pedicle morphometry in AIS, structures at risk during pedicle screw insertion, and accuracy and safety of various pedicle screw insertion techniques. The importance of computer navigation and future research regarding pedicle screw placement in AIS were also briefly reviewed. Many authors have reported abnormal pedicle anatomy in AIS. Injury to the neural structures was highest over the apical region, whereas aortic injury was the highest at T5 and T10. In the proximal thoracic spine, the esophagus could be injured even with screws as short as 25 mm. Overall pedicle perforation rates for perforations &gt;0 and &gt;2 mm (assessed by computed tomography) ranged from 6.4% to 65.0% and 3.7% to 29.9%, respectively. The critical pedicle perforation (&gt;2 mm excluding lateral thoracic) and anterior perforation (&gt;0 mm) rates was reported to range from 1.5% to 14.5% and 0.0% to 16.1%, respectively. Pedicle perforation rates were lower with the use of computer navigation. The incidence of neurological adverse events after scoliosis surgery was 0.06%–1.9%. Aortic injury has only been observed in case reports. According to the available literature, pedicle screw insertion in AIS is considered safe with low rates of clinical adverse events. Moreover, the use of navigation technology has been shown to reduce pedicle perforation rates.</p>

2020 ◽  
Vol 14 (6) ◽  
pp. 554-561
Author(s):  
Markus Rafael Konieczny ◽  
Johannes Boos ◽  
Andrea Steuwe ◽  
Christoph Schleich ◽  
Max Prost ◽  
...  

Purpose Reports on heterogenous groups of patients have indicated that pedicle screw insertion guided by navigation (PIN) leads to, for the patient, higher doses of radiation compared with pedicle screw insertion guided by fluoroscopy (PIF). This would be a major concern, especially in paediatric deformity correction. Methods After a power analysis (aiming at > 0.8) 293 pedicle screws which were inserted in patients with adolescent idiopathic scoliosis were analyzed by comparing effective dose and fluoroscopy time per screw for three different techniques. Groups 2 and 3 were matched to Group 1 by Lenke type of scoliosis. Group 1 were prospectively enrolled consecutive patients that have been operated on by PIN with image acquisition by preoperative CT scan (CTS). Group 2 were consecutive retrospectively matched patients who have been operated on by PIN with image acquisition by an intraoperative 3D scan (3DS). Group 3 were consecutive retrospectively matched patients who have been operated on by PIF. Results Mean dose of radiation per screw was 1.0 mSv (sd 0.8) per screw in CTS patients, 0.025 mSv (sd 0.001) per screw in 3DS patients and 0.781 mSv (sd 0.12) per screw in PIF patients. The difference was significant (p < 0.0001). Conclusion When we compared different techniques of navigation, navigation by image acquisition with CTS showed a significantly higher (by 97.5%) dose of radiation per screw for the patient than navigation by image acquisition by a 3DS. Navigation by 3DS showed significantly lower effective dose per screw for the adolescent patients than the fluoroscopic technique. Level of Evidence: II


2016 ◽  
Vol 7 (04) ◽  
pp. 550-553 ◽  
Author(s):  
Sohail Rafi ◽  
Naseem Munshi ◽  
Asad Abbas ◽  
Rabia Hassan Shaikh ◽  
Imtiaz Hashmi

ABSTRACT Introduction: Adolescent idiopathic scoliosis is the most common type of scoliosis. A Cobb angle of 50° will progress beyond the age of spinal maturity. Surgery over bracing is advised at a Cobb angle above or equal to 50°. The aim of surgery is to bring the Cobb angle down below 50° to prevent reprogression as well as improve the quality of life. The objective of the study is to analyze the efficacy and significance in lifestyle improvement of pedicle screw-only fixation system versus the more common hybrid instrumentation system used for the surgical treatment of adolescent idiopathic scoliosis. Materials and Methods: A prospective cohort study was conducted involving two groups of patients were included in the study. One group was operated with pedicle screw-only method while the other with hybrid instrumentation system. The pre- and post-operative Cobb’s angles were taken across a follow-up of 4 years. An SRS-30 questionnaire was given in a yearly follow-up to assess the lifestyle improvement of the patient. Results: Pedicle screw-only method was significantly more effective in reducing Cobb’s angle (P = 0.0487). It was showed less loss of correction (P = 0.009) pedicle screw-only surgery was also better at reducing thoracic curves (P = 0.001). There seemed a better recovery time with pedicle screw surgery (P = 0.003). Conclusion: Pedicle screws are more effective and durable than hybrid systems at when treating adolescent idiopathic scoliosis.


Spine ◽  
2010 ◽  
Vol 35 (3) ◽  
pp. 347-352 ◽  
Author(s):  
Jun Takahashi ◽  
Hiroki Hirabayashi ◽  
Hiroyuki Hashidate ◽  
Nobuhide Ogihara ◽  
Hiroyuki Kato

10.29007/kbf7 ◽  
2018 ◽  
Author(s):  
Mahmoud Hafez ◽  
Mohamed Fouda

The increased use of pedicle screws in scoliosis creates a challenge for accurate and safe placement ofscrew within the pedicle during the scoliosis surgery. Patient-specific templates (PST) is a novelmethod to guide the surgeons for allocating and detecting the positions and trajectories of pediclescrews in scoliosis surgery. Based on CT-scans and according to certain protocol, this technique willallow the surgeon to construct a 3D model of spine and present the stage and vertebrae which containthe most deformed bone. With preplanned surgery on specific software, we can develop an accurateand safe position of pedicle screws and its trajectories. This method has the ability to customize theplacement and the size of each pedicle screw based on the unique morphology and landmarks of thevertebrae.


2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


Sign in / Sign up

Export Citation Format

Share Document