scholarly journals Finite Element Modelling of Beams with Arbitrary Active Constrained Layer Damping Treatments

Author(s):  
C.M.A. Vasques ◽  
B. Mace ◽  
P. Gardonio ◽  
J.D. Rodrigues
2002 ◽  
Vol 8 (6) ◽  
pp. 877-902 ◽  
Author(s):  
W. Laplante ◽  
T. Chen ◽  
A. Baz ◽  
W. Sheilds

Vibration and sound radiation from fluid-loaded cylindrical shells are controlled using patches of Active Constrained Layer Damping (ACLD). The performance and the enhanced damping characteristics via reduced vibrations and sound radiation in the surrounding fluid is demonstrated both theoretically and experimentally. A prime motivation for this work is the potential wide applications in submarines and torpedoes where acoustic stealth is critical to the effectiveness of missions. A finite element model is also developed to predict the vibration and the acoustic radiation in the surrounding fluid of the ACLD-treated cylinders. The developed model is used to study the effectiveness of the control and placement strategies of the ACLD in controlling the fluid-structure interactions. A water tank is constructed that incorporates test cylinders treated with two ACLD patches placed for targeting specific vibration modes. Using this arrangement, the effectiveness of different control strategies is studied when the submerged cylinders are subjected to internal excitation, and the radiated sound pressure level in the water is observed. Comparisons are made between the experimental results and the theoretical predictions to validate the finite element model.


2004 ◽  
Vol 127 (2) ◽  
pp. 173-187 ◽  
Author(s):  
J. X. Gao ◽  
W. H. Liao

In this paper, an energy-based approach is developed to investigate damping characteristics of beams with enhanced self-sensing active constrained layer (ESACL) damping treatments. Analytical formulations for the active, passive, and total hybrid modal loss factors of the cantilever and simply-supported beams partially covered with the ESACL are derived. The analytical formulations are validated with the results in the literature and experimental data for the cantilever beam. Beams with other boundary conditions can also be solved and discussed using the presented approach. The results show that the edge elements in the ESACL can significantly improve the system damping performance as compared to the active constrained layer damping treatment. The effects of key parameters, such as control gain, edge element stiffness, location, and coverage of the ESACL patch on the system loss factors, have been investigated. It has also been shown that the boundary conditions play an important role on the damping characteristics of the beam structure with the ESACL treatment. With careful analysis on the location and coverage of the partially covered ESACL treatment, effective vibration control for beams under various boundary conditions for specific modes of interest would be achieved.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
R. M. Kanasogi ◽  
M. C. Ray

This paper deals with the analysis of active constrained layer damping (ACLD) of smart skew laminated composite plates. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs). A finite element model has been developed for accomplishing the task of the active constrained layer damping of skew laminated symmetric and antisymmetric cross-ply and antisymmetric angle-ply composite plates integrated with the patches of such ACLD treatment. Both in-plane and out-of-plane actuations by the constraining layer of the ACLD treatment have been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. Particular emphasis has been placed on investigating the performance of the patches when the orientation angle of the piezoelectric fibers of the constraining layer is varied in the two mutually orthogonal vertical planes. Also, the effects of varying the skew angle of the substrate laminated composite plates and different boundary conditions on the performance of the patches have been studied. The analysis reveals that the vertically and the obliquely reinforced 1–3 PZC materials should be used for achieving the best control authority of ACLD treatment, as the boundary conditions of the smart skew laminated composite plates are simply supported and clamped-clamped, respectively.


Sign in / Sign up

Export Citation Format

Share Document