An Electro-Mechanical Impedance Approach for Vibration Control Using Multiple Piezoelectric Actuators and Sensors

Author(s):  
C.P. Providakis ◽  
D.P.N. Kontoni ◽  
M.E. Voutetaki
Author(s):  
Lawrence R. Corr ◽  
William W. Clark

Abstract This paper presents a numerical study in which active and hybrid vibration confinement is compared with a conventional active vibration control method. Vibration confinement is a vibration control technique that is based on reshaping structural modes to produce “quiet areas” in a structure as opposed to adding damping as in conventional active or passive methods. In this paper, active and hybrid confinement is achieved in a flexible beam with two pairs of piezoelectric actuators and sensors and with two vibration absorbers. For comparison purposes, active damping is achieved also with two pairs of piezoelectric actuators and sensors using direct velocity feedback. The results show that both approaches are effective in controlling vibrations in the targeted area of the beam, with direct velocity feedback being slightly more cost effective in terms of required power. When combined with passive confinement, however, each method is improved with a significant reduction in required power.


Author(s):  
Matthew L. Grier ◽  
Nader Jalili

A cantilever rubber beam with laminated piezoelectric actuators and sensors is initially tested to determine the properties governing the dynamic behavior of the beam. Various techniques are employed to estimate beam properties such as elastic stiffness, damping coefficient and natural frequencies, as well as piezoelectric actuator capabilities for vibration control purposes. A simplified Euler-Bernoulli model is proposed, which is validated using the properties previously discovered. A passive electric shunt circuit is then proposed for the beam vibration suppression, when subjected to external excitation forces. Simulation of a series resistor-inductor shunt circuit is used to demonstrate the capability of altering the beam’s dynamic behavior. Various methods for tuning the shunt circuit are explored in an effort to achieve optimal vibration suppression characteristics. Furthermore, experimental testing is conducted for validation of simulation results, which also yields similar information about passive shunting techniques for vibration damping.


Sign in / Sign up

Export Citation Format

Share Document