Fast Evaluation of the Caputo Fractional Derivative and its Applications to Fractional Diffusion Equations: A Second-Order Scheme

2017 ◽  
Vol 22 (4) ◽  
pp. 1028-1048 ◽  
Author(s):  
Yonggui Yan ◽  
Zhi-Zhong Sun ◽  
Jiwei Zhang

AbstractThe fractional derivatives include nonlocal information and thus their calculation requires huge storage and computational cost for long time simulations. We present an efficient and high-order accurate numerical formula to speed up the evaluation of the Caputo fractional derivative based on theL2-1σformula proposed in [A. Alikhanov,J. Comput. Phys., 280 (2015), pp. 424-438], and employing the sum-of-exponentials approximation to the kernel function appeared in the Caputo fractional derivative. Both theoretically and numerically, we prove that while applied to solving time fractional diffusion equations, our scheme not only has unconditional stability and high accuracy but also reduces the storage and computational cost.

Author(s):  
Ruchi Sharma ◽  
Pranay Goswami ◽  
RAVI DUBEY ◽  
Fethi Belgacem

In this paper, we introduced a new fractional derivative operator based on Lonezo Hartely function, which is called G-function. With the help of the operator, we solved a fractional diffusion equations. Some applications related to the operator is also discussed as form of corollaries.


Sign in / Sign up

Export Citation Format

Share Document