Itô-Taylor Schemes for Solving Mean-Field Stochastic Differential Equations

2017 ◽  
Vol 10 (4) ◽  
pp. 798-828 ◽  
Author(s):  
Yabing Sun ◽  
Jie Yang ◽  
Weidong Zhao

AbstractThis paper is devoted to numerical methods for mean-field stochastic differential equations (MSDEs). We first develop the mean-field Itô formula and mean-field Itô-Taylor expansion. Then based on the new formula and expansion, we propose the Itô-Taylor schemes of strong order γ and weak order η for MSDEs, and theoretically obtain the convergence rate γ of the strong Itô-Taylor scheme, which can be seen as an extension of the well-known fundamental strong convergence theorem to the mean-field SDE setting. Finally some numerical examples are given to verify our theoretical results.

2014 ◽  
Vol 15 (3) ◽  
pp. 618-646 ◽  
Author(s):  
Weidong Zhao ◽  
Wei Zhang ◽  
Lili Ju

AbstractIn this paper, a new numerical method for solving the decoupled forward-backward stochastic differential equations (FBSDEs) is proposed based on some specially derived reference equations. We rigorously analyze errors of the proposed method under general situations. Then we present error estimates for each of the specific cases when some classical numerical schemes for solving the forward SDE are taken in the method; in particular, we prove that the proposed method is second-order accurate if used together with the order-2.0 weak Taylor scheme for the SDE. Some examples are also given to numerically demonstrate the accuracy of the proposed method and verify the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Ying Du ◽  
Changlin Mei

To realize the applications of stochastic differential equations with jumps, much attention has recently been paid to the construction of efficient numerical solutions of the equations. Considering the fact that the use of the explicit methods often results in instability and inaccurate approximations in solving stochastic differential equations, we propose two implicit methods, theθ-Taylor method and the balancedθ-Taylor method, for numerically solving the stochastic differential equation with jumps and prove that the numerical solutions are convergent with strong order 1.0. For a linear scalar test equation, the mean-square stability regions of the methods are derived. Finally, numerical examples are given to evaluate the performance of the methods.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2195
Author(s):  
Zhenyu Wang ◽  
Qiang Ma ◽  
Xiaohua Ding

Explicit numerical methods have a great advantage in computational cost, but they usually fail to preserve the conserved quantity of original stochastic differential equations (SDEs). In order to overcome this problem, two improved versions of explicit stochastic Runge–Kutta methods are given such that the improved methods can preserve conserved quantity of the original SDEs in Stratonovich sense. In addition, in order to deal with SDEs with multiple conserved quantities, a strategy is represented so that the improved methods can preserve multiple conserved quantities. The mean-square convergence and ability to preserve conserved quantity of the proposed methods are proved. Numerical experiments are implemented to support the theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Rui Zhang ◽  
Yinjing Guo ◽  
Xiangrong Wang ◽  
Xueqing Zhang

This paper extends the stochastic stability criteria of two measures to the mean stability and proves the stability criteria for a kind of stochastic Itô’s systems. Moreover, by applying optimal control approaches, the mean stability criteria in terms of two measures are also obtained for the stochastic systems with coefficient’s uncertainty.


Sign in / Sign up

Export Citation Format

Share Document