scholarly journals Examination of Minimum Time Step, from Modified Heisenberg Uncertainty Principle, Inflaton Physics and Black Hole Physics

2017 ◽  
Vol 03 (01) ◽  
pp. 39-45
Author(s):  
Andrew Walcott Beckwith
2010 ◽  
Vol 19 (12) ◽  
pp. 2003-2009 ◽  
Author(s):  
POURIA PEDRAM

Various candidates of quantum gravity such as string theory, loop quantum gravity and black hole physics all predict the existence of a minimum observable length which modifies the Heisenberg uncertainty principle to the so-called generalized uncertainty principle (GUP). This approach results from the modification of the commutation relations and changes all Hamiltonians in quantum mechanics. In this paper, we present a class of physically acceptable solutions for a general commutation relation without directly solving the corresponding generalized Schrödinger equations. These solutions satisfy the boundary conditions and exhibit the effect of the deformed algebra on the energy spectrum. We show that this procedure prevents us from doing equivalent but lengthy calculations.


2018 ◽  
Vol 33 (29) ◽  
pp. 1830028
Author(s):  
B. F. L. Ward

Working in the context of the Planck scale cosmology formulation of Bonanno and Reuter, we use our resummed quantum gravity approach to Einstein’s general theory of relativity to estimate the value of the cosmological constant as [Formula: see text]. We show that SUSY GUT models are constrained by the closeness of this estimate to experiment. We also address various consistency checks on the calculation. In particular, we use the Heisenberg uncertainty principle to remove a large part of the remaining uncertainty in our estimate of [Formula: see text].


Author(s):  
Anurag Chapagain

Abstract: It is a well-known fact in physics that classical mechanics describes the macro-world, and quantum mechanics describes the atomic and sub-atomic world. However, principles of quantum mechanics, such as Heisenberg’s Uncertainty Principle, can create visible real-life effects. One of the most commonly known of those effects is the stability problem, whereby a one-dimensional point base object in a gravity environment cannot remain stable beyond a time frame. This paper expands the stability question from 1- dimensional rod to 2-dimensional highly symmetrical structures, such as an even-sided polygon. Using principles of classical mechanics, and Heisenberg’s uncertainty principle, a stability equation is derived. The stability problem is discussed both quantitatively as well as qualitatively. Using the graphical analysis of the result, the relation between stability time and the number of sides of polygon is determined. In an environment with gravity forces only existing, it is determined that stability increases with the number of sides of a polygon. Using the equation to find results for circles, it was found that a circle has the highest degree of stability. These results and the numerical calculation can be utilized for architectural purposes and high-precision experiments. The result is also helpful for minimizing the perception that quantum mechanical effects have no visible effects other than in the atomic, and subatomic world. Keywords: Quantum mechanics, Heisenberg Uncertainty principle, degree of stability, polygon, the highest degree of stability


Author(s):  
Olga Ivanovna Pilipenko ◽  
Andrey Igorevich Pilipenko

The authors structure the main functions of the state in the economic system as the “famous triad” of R. Musgrave. They are connected with allocating resources, redistributing income (equality in income distribution), and stabilizing economy (economic efficiency). The aim is to find the causes of their low efficient implementation by the state. This is manifested in the fact that society itself does not have the ability to adequately control the current activities of the state created and put over it in order to protect its interests; in the contradictory essence of the state itself, which is the regulator, which forms the rules of behavior of economic agents and at the same time acts as the economic agent participating in market transactions. To model the options for the effective resolution of the problems of the “magic triangle,” the authors formulated the Musgrave uncertainty principle by analogy with the Heisenberg uncertainty principle in physics. This makes it possible to assess the budget expenditures of the state in order to get out of its low efficiency trap.


Sign in / Sign up

Export Citation Format

Share Document