scholarly journals Natural Regeneration on Planted Clearcuts—The Easy Way to Mixed Forest?

2016 ◽  
Vol 06 (04) ◽  
pp. 281-294 ◽  
Author(s):  
Emma Holmström ◽  
Per Magnus Ekö ◽  
Karin Hjelm ◽  
Matts Karlsson ◽  
Urban Nilsson
2020 ◽  
Vol 66 (No. 12) ◽  
pp. 607-615
Author(s):  
Maame Esi Hammond ◽  
Radek Pokorný

The study focused on the effects of gap size on natural regeneration of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) and micro-environmental soil conditions in gaps of different sizes under temperate mixed forest in the Czech Republic. Six gaps comprising two for small (≥ 200 m<sup>2</sup>), medium (≥ 500 m<sup>2</sup>) and big (≥ 900 m<sup>2</sup>) each were selected. Ten circular 1 m<sup>2</sup> subsampling plots were established at 2 m intervals along individual North-South-East-West transects, including one at the gap centre. Regeneration was monitored in 2014 and repeatedly in 2019. Soil conditions were only measured in 2019. Gap size was found to be a significant parameter for European beech natural regeneration in 2014. Besides, the quick occupation of European beech in gaps at natural beech zone provoked its prolific regeneration compared to Norway spruce in 2014. However, in 2019 the recent threat of weather variabilities was responsible for the general abysmal growth performance of natural regeneration. Division of gap microsites into different within-gap positions based on prevailing light or shade conditions was helpful in assessing the significant variations of soil conditions within-gap positions and among gap sizes. Soil temperature and moisture significantly influenced the regeneration of European beech and Norway spruce, respectively.  


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 735
Author(s):  
Xueying Huo ◽  
Dexiang Wang ◽  
Deye Bing ◽  
Yuanze Li ◽  
Haibin Kang ◽  
...  

Research Highlights: Natural regeneration is important in pine–oak mixed forests (Pinus armandii Franch., Pinus tabuliformis Carr., and Quercus aliena Bl. var. acuteserrata Maxim.ex Wenz.), but allelopathy as a limiting factor has not been studied. Our research provides insights into allelopathy in pine–oak mixed forest litter. Background and Objectives: Allelopathy among tree species occupying the same ecological niche in mixed forests may adversely affect regeneration. We studied allelopathy in pine and oak forest litter to determine the effect on regeneration, whether it is offset by adding activated carbon or plant ash, and what allelopathic substances are present. Materials and Methods: We used laboratory seed culture and field seeding to determine pine and oak litter regeneration effects on P. tabuliformis and P. armandii in the Qinling Mountains, China. In the laboratory, we irrigated seeds with three different litter concentrations. A fourth treatment incorporated activated carbon. The field study established small quadrats in mixed forest to study how removing or retaining litter and spreading plant ash affected sown seeds. High performance liquid chromatography–mass spectrometry was used to compare differences in chemical substances in extracts with and without activated carbon. Results: Litter extracts significantly affected germination rates in both species. Seedling morphological and physiological indexes showed that litter extracts negatively affected growth in both species, but activated carbon alleviated this inhibitory effect on P. armandii. Forest stand and litter did not affect P. armandii seed germination. Pinus tabuliformis germination rates were significantly higher in plots with removed litter than when litter was retained or plant ash spread, and lower in oak than pine forest. Allelopathic substances detected in pine forest were trioctyl trimellitate, amyloid β-Peptide 10–20, and triisobutyl phosphate, potentially affecting P. armandii seed germination and growth. Conclusions: Appropriate removal of litter in mixed forests can improve the natural regeneration ability of P. tabuliformis.


2008 ◽  
Vol 54 (No. 3) ◽  
pp. 92-101 ◽  
Author(s):  
Š. Hofmeister ◽  
M. Svoboda ◽  
J. Souček ◽  
S. Vacek

Two permanent sample plots (both 0.25 ha) were established in a mixed forest in the Orlické hory Mts. Protected Landscape Area (northeastern Bohemia) to analyze the natural regeneration of Norway spruce (<I>Picea abies</I> [L.] Karst.) and silver fir (<I>Abies alba</I> Mill.). All the seedlings (height 0.1–0.5 m), saplings (height 0.5 m, <I>d</I><sub>1.3</sub> 3 cm) and trees (<I>d</I><sub>1.3</sub> > 3 cm) were localized and measured. The analysis of the spatial pattern and statistical evaluation were carried out by means of Ripley’s <I>K</I>-function. All the growth stages of the spruce and the fir showed an aggregated (clump) pattern, whereas the regeneration of fir was positively correlated with mature spruces and the regeneration of spruce was in a positive relation with mature firs. The results indicate that for germination and stable growth in the first stages of development, the fir can find more favourable conditions under the crowns of spruce trees and the spruce under mature firs.


2018 ◽  
Vol 39 (3) ◽  
pp. 419-430
Author(s):  
Patricio Carey ◽  
Rodrigo Labbé ◽  
Guillermo Trincado ◽  
Oscar Thiers ◽  
Daniel Gárate

2020 ◽  
Vol 66 (No. 10) ◽  
pp. 407-419
Author(s):  
Maame Esi Hammond ◽  
Radek Pokorny ◽  
Lumír Dobrovolný ◽  
Michal Friedl ◽  
Nina Hiitola

Forest gaps remain the optimal forest management practice in modern forestry. Upon all the physical properties of forest gaps, the ‘gap size’ feature stands out as an essential property. The effect of gap size on tree species composition and diversity of natural regeneration in forest gaps of different sizes was investigated. Eight research forest gaps were selected from the Training Forest School Enterprise, also called Masaryk Forest in Křtiny, a temperate mixed forest in the Czech Republic. By given gap sizes, small (&lt; 700 m<sup>2</sup>) and large gaps (≥ 700 m<sup>2</sup>) were defined. Forty-one (41) regeneration microsites (RSs) of 1 m<sup>2</sup> circular area at 2 m intervals were demarcated within each forest gap. These RSs served as data collection points. From the total of eleven (11) species enumerated, large gaps obtained higher species composition (10) and diversity (Simpson = 0.5 1-D; Shannon = 1.0 H and Pielou’s evenness = 0.5 J indices) records, yet, small gaps presented favourable conditions for prolific natural regeneration significantly. Light-adapted species demonstrated no significant difference (P &gt; 0.05) between small and large gaps, however, intermediate and shade-tolerant species were significantly higher (P &lt; 0.05) in small gaps. There were progressive declines in height growth of natural regeneration from 0–20 cm to 21–50 cm and 51+ cm in small and large gaps at R<sup>2 </sup>= 99% and 88%, respectively. <br /> The development of herbaceous vegetation in small and large gaps had positive and negative effects on the natural regeneration of Fagus sylvatica and Abies alba species, respectively.


2008 ◽  
Vol 53 (No. 4) ◽  
pp. 170-184 ◽  
Author(s):  
V. Hurt ◽  
P. Kantor

The paper is the 6<sup>th</sup> report on the production potential and stability of mixed forest stands in uplands. A mixed beech/larch stand that was established by natural regeneration in 1934 to 1942 is assessed. The stand is situated at an altitude of 460 m above sea level. It has been left to its natural development since 1961. At that time, the stand was characterized as an individually mixed, diameter- and height-differentiated 25-year pole-stage stand. The proportion of larch and beech amounted to 40% and 17%, respectively. Hornbeam (25%), oak (11%) and to a lesser extent birch (5%) and spruce (3%) also occurred in the stand. In the course of 42 years, the proportion of larch in this stand without planned thinning measures decreased to 35%. On the other hand, the proportion of beech increased to 39%. During all 5-year inventories, the stand could be characterized as a stabilized one with high production potential. Its initial growing stock 63 m<sup>3</sup>/ha at an age of 25 years increased to 497 m<sup>3</sup>/ha at an age of 67 years in 2003. At present, current volume increment amounts to 9.8 to 12.5 m<sup>3</sup>/ha/year.


2005 ◽  
Vol 156 (12) ◽  
pp. 477-480 ◽  
Author(s):  
Khosro Sagheb-Talebi ◽  
Bahram Delfan Abazari ◽  
Manuchehr Namiranian

Regeneration process was studied within twentytwo gaps produced from natural falling of trees in a semivirgin mixed forest of oriental beech in Iran. The area of the openings varied between 163 m2 and 1683 m2, caused by falling of 1 to 6 trees. Natural regeneration depended on the gap size, and was established within the openings with different compositions.


2019 ◽  
Vol 48 (3) ◽  
pp. 417-425
Author(s):  
Md Khayrul Alam Bhuiyan ◽  
Md Akhter Hossain ◽  
Abdul Kadir Ibne Kamal ◽  
Mohammed Kamal Hossain ◽  
Mohammed Jashimuddin ◽  
...  

A study was conducted by using 5m × 5m sized 179 quadrates following multistage random sampling method for comparative regenerating tree species, quantitative structure, diversity, similarity and climate resilience in the degraded natural forests and plantations of Cox's Bazar North and South Forest Divisions. A total of 70 regenerating tree species were recorded representing maximum (47 species) from degraded natural forests followed by 43 species from 0.5 year 39 species from 1.5 year and 29 species from 2.5 year old plantations. Quantitative structure relating to ecological dominance indicated dominance of Acacia auriculiformis, Grewia nervosa and Lithocarpus elegans seedlings in the plantations whereas seedlings of Aporosa wallichii, Suregada multiflora and Grewia nervosa in degraded natural forests. The degraded natural forests possess higher natural regeneration potential as showed by different diversity indices. The dominance-based cluster analysis showed 2 major cluster of species under one of which multiple sub-clusters of species exists. Poor plant diversity and presence of regenerating exotic species in the plantations indicated poor climate resilience of forest ecosystem in terms of natural regeneration.


Sign in / Sign up

Export Citation Format

Share Document