scholarly journals MIER1 (mesoderm induction early response 1 homolog (Xenopus laevis))

Author(s):  
LL Gillespie ◽  
GD Paterno
Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 339-349 ◽  
Author(s):  
K. Symes ◽  
J.C. Smith

The first inductive interaction in amphibian development is mesoderm induction, in which an equatorial mesodermal rudiment is induced from the animal hemisphere under the influence of a signal from vegetal pole blastomeres. We have recently discovered that the Xenopus XTC cell line secretes a factor which has the properties we would expect of a mesoderm-inducing factor. In this paper, we show that an early response to this factor by isolated Xenopus animal pole regions is a change in shape, involving elongation and constriction. We show by several criteria, including general appearance, timing, rate of elongation and the nonrequirement for cell division that these movements resemble the events of gastrulation. We also demonstrate that the movements provide an early, simple and reliable indicator of mesoderm induction and are of use in providing a ‘model system’ for the study of mesoderm induction and gastrulation. For example, we show that the timing of gastrulation movements does not depend upon the time of receipt of a mesoderm-induction signal, but on an intrinsic gastrulation ‘clock’ which is present even in those animal pole cells that would not nomally require it.


Development ◽  
1987 ◽  
Vol 100 (2) ◽  
pp. 279-295 ◽  
Author(s):  
L. Dale ◽  
J.M. Slack

We have further analysed the roles of mesoderm induction and dorsalization in the formation of a regionally specified mesoderm in early embryos of Xenopus laevis. First, we have examined the regional specificity of mesoderm induction by isolating single blastomeres from the vegetalmost tier of the 32-cell embryo and combining each with a lineage-labelled (FDA) animal blastomere tier. Whereas dorsovegetal (D1) blastomeres induce ‘dorsal-type’ mesoderm (notochord and muscle), laterovegetal and ventrovegetal blastomeres (D2–4) induce either ‘intermediate-type’ (muscle, mesothelium, mesenchyme and blood) or ‘ventral-type’ (mesothelium, mesenchyme and blood) mesoderm. No significant difference in inductive specificity between blastomeres D2, 3 and 4 could be detected. We also show that laterovegetal and ventrovegetal blastomeres from early cleavage stages can have a dorsal inductive potency partially activated by operative procedures, resulting in the induction of intermediate-type mesoderm. Second, we have determined the state of specification of ventral blastomeres by isolating and culturing them in vitro between the 4-cell stage and the early gastrula stage. The majority of isolates from the ventral half of the embryo gave extreme ventral types of differentiation at all stages tested. Although a minority of cases formed intermediate-type and dorsal-type mesoderms we believe these to result from either errors in our assessment of the prospective DV axis or from an enhancement, provoked by microsurgery, of some dorsal inductive specificity. The results of induction and isolation experiments suggest that only two states of specification exist in the mesoderm of the pregastrula embryo, a dorsal type and a ventral type. Finally we have made a comprehensive series of combinations between different regions of the marginal zone using FDA to distinguish the components. We show that, in combination with dorsal-type mesoderm, ventral-type mesoderm becomes dorsalized to the level of intermediate-type mesoderm. Dorsal-type mesoderm is not ventralized in these combinations. Dorsalizing activity is confined to a restricted sector of the dorsal marginal zone, it is wider than the prospective notochord and seems to be graded from a high point at the dorsal midline. The results of these experiments strengthen the case for the three-signal model proposed previously, i.e. dorsal and ventral mesoderm inductions followed by dorsalization, as the simplest explanation capable of accounting for regional specification within the mesoderm of early Xenopus embryos.


2009 ◽  
Vol 329 (1) ◽  
pp. 130-139 ◽  
Author(s):  
Christopher E. Barton ◽  
Emilios Tahinci ◽  
Christopher E. Barbieri ◽  
Kimberly N. Johnson ◽  
Alison J. Hanson ◽  
...  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15108-e15108
Author(s):  
Dawei Li ◽  
Senglin Zhao ◽  
Ye Xu ◽  
Xinxiang Li ◽  
Sanjun Cai

e15108 Background: Mesoderm induction early response 1 (MIER1) was downregulated and predicted poor prognosis in CRC patients. However, the mechanisms of the down regulation of MIER1 in CRC remained unclear. Increasing evidence indicates that dysregulation of microRNAs promotes the progression of cancer through the repression of tumour suppressors.Here, we identified exosomes derived miR-454-3p as a novel regulator of MIER1 in CRC. Methods: The effect of miR-454-3p expression on cancer proliferation and metastasis was assessed in cells by altering the expression of miR-454-3p in vitro and in vivo. Mechanistic investigation was carried out by using cell and molecular biology approaches. Results: Functionally, ectopic expression or silencing of exosomes derived miR-454-3P, respectively, promoted or inhibited CRC cell proliferation, colony formation and cell cycle transition, as well as enhanced or prevented the invasion, metastasis of CRC cells and epithelial to mesenchymal transition of CRC cells in vitro and in vivo. Molecularly, exosomes derived miR-454-3P functioned as an onco-miRNA by activating the MIER1-regulated NOTCH pathway. Overexpression or silencing of MIER1 could partially reverse the effects of the overexpression or repression of exosomes derived miR-454-3P on CRC progress caused by activation of the NOTCH pathway in vitro and in vivo. Clinically, high miR-454-3P expression predicted poor survival in CRC patients, especially combined with low MIER1 expression. Conclusions: Collectively, we identified exosomes derived miR- 454-3p as an onco-miRNA, which acts by directly repressing MIER1 in CRC.


1990 ◽  
Vol 3 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Anita B. Roberts ◽  
Paturu Kondaiah ◽  
Frédéric Rosa ◽  
Shinichi Watanabe ◽  
Peter Good ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document