Autonomous Key Management (AKM) Security Architecture for Vehicle and IoT Applications

2017 ◽  
Author(s):  
Jon Barton Shields ◽  
Jörg Huser ◽  
David Gell
2021 ◽  
Vol 21 (3) ◽  
pp. 50-72
Author(s):  
K. Swapna Sudha ◽  
N. Jeyanthi

Abstract Internet of Things (IoT) is the predominant emerging technology that targets on facilitating interconnection of internet-enabled resources. IoT applications concentrate on automating different tasks that facilitate physical objects to act autonomously without any human interventions. The emerging and current IoT applications are determined to be highly significant for improving the degree of efficiency, comfort and automation for its users. Any kind of security breach on the system will directly influences the life of the humans In this paper, a comprehensive review on Privacy requirements and application layer Security in Internet of Things (IoT) is presented for exploring the possible security issues in IoT that could be launched over the individual layers of IoT architecture. This review explores different challenges of classical security solutions that are related to authentication, key management and cryptographic solutions.It also presents the details of existing access control and device authentication schemes with their pros and cons.


Author(s):  
Arijit Ukil ◽  
Soma Bandyopadhyay ◽  
Abhijan Bhattacharyya ◽  
Arpan Pal ◽  
Tulika Bose

Purpose – The purpose of this paper is to study lightweight security scheme for Internet of Things (IoT) applications using Constrained Application Protocol (CoAP). Resource-constrained characteristics of IoT systems have ushered in compelling requirements for lightweight application protocol and security suites. CoAP has already been established as the candidate protocol for IoT systems. However, low overhead security scheme for CoAP is still an open problem. Existing security solutions like Datagram Transport Layer Security (DTLS) is not suitable, particularly due to its expensive handshaking, public key infrastructure (PKI)-based authentication and lengthy ciphersuite agreement process. Design/methodology/approach – This paper proposes a lightweight security scheme in CoAP using Advanced Encryption Standard (AES) 128 symmetric key algorithm. The paper presents an object security (payload embedded)-based robust authentication mechanism with integrated key management. The paper introduces few unique modifications to CoAP header to optimize security operation and minimize communication cost. Findings – It is resilient to number of security attacks like replay attack, meet-in-the-middle attack and secure under chosen plaintext attack. This scheme is generic in nature, applicable for gamut of IoT applications. The paper proves efficacy of our proposed scheme for vehicle tracking application in emulated laboratory setup. Specifically, it compares with DTLS-enabled CoAP to establish the lightweight feature of our proposed solution. Research limitations/implications – This paper mainly focuses on implementing in-vehicle tracking systems as an IoT application and used CoAP as the application protocol. Practical implications – Such a lightweight security scheme would provide immense benefit in IoT systems so that resource constraint-sensing devices and nodes can be made secure. This would impact IoT eco systems to a large extent. Originality/value – Such kind of security suite that provides both robustness and lightweight feature is hitherto not known to the authors, particularly in CoAP for IoT applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Chang-Seop Park

After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient’s life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician’s treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance.


Sign in / Sign up

Export Citation Format

Share Document