Fuel Injection Strategies for Improving Performance and Reducing Emissions of a Low Compression Ratio Diesel Engine

2021 ◽  
Author(s):  
Vikraman Vellandi ◽  
Anand Krishnasamy ◽  
A Ramesh
Energy ◽  
2022 ◽  
pp. 123074
Author(s):  
Zaiwang Chen ◽  
Yikang Cai ◽  
Guangfu Xu ◽  
Huiquan Duan ◽  
Ming Jia

2012 ◽  
pp. 167-182
Author(s):  
M.J. McGhee ◽  
P.J. Shayler ◽  
A. La Rocca ◽  
M. Murphy ◽  
I. Pegg

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4023 ◽  
Author(s):  
Stefano d’Ambrosio ◽  
Alessandro Ferrari ◽  
Alessandro Mancarella ◽  
Salvatore Mancò ◽  
Antonio Mittica

An experimental investigation has been carried out to compare the performance and emissions of a low-compression-ratio Euro 5 diesel engine featuring high EGR rates, equipped with different injector technologies, i.e., solenoid, indirect-acting, and direct-acting piezoelectric. The comparisons, performed with reference to a state-of-the-art double fuel injection calibration, i.e., pilot-Main (pM), are presented in terms of engine-out exhaust emissions, combustion noise (CN), and fuel consumption, at low–medium engine speeds and loads. The differences in engine performance and emissions of the solenoidal, indirect-acting, and direct-acting piezoelectric injector setups have been found on the basis of experimental results to mainly depend on the specific features of their hydraulic circuits rather than on the considered injector driving system.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2644 ◽  
Author(s):  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor ◽  
Wan Mohd Faizal Wan Mahmood

Blending diesel with biofuels, such as ethanol and palm oil methyl ester (PME), enhances the fuel properties and produces improved engine performance and low emissions. However, the presence of ethanol, which has a small cetane number and low heating value, reduces the fuel ignitability. This work aimed to study the effect of injection strategies, compression ratio (CR), and air intake temperature (Ti) modification on blend ignitability, combustion characteristics, and emissions. Moreover, the best composition of diesel–ethanol–PME blends and engine modification was selected. A simulation was also conducted using Converge CFD software based on a single-cylinder direct injection compression ignition Yanmar TF90 engine parameter. Diesel–ethanol–PME blends that consist of 10% ethanol with 40% PME (D50E10B40), D50E25B25, and D50E40B10 were selected and conducted on different injection strategies, compression ratios, and intake temperatures. The results show that shortening the injection duration and increasing the injected mass has no significant effect on ignition. Meanwhile, advancing the injection timing improves the ignitability but with weak ignition energy. Therefore, increasing the compression ratio and ambient temperature helps ignite the non-combustible blends due to the high temperature and pressure. This modification allowed the mixture to ignite with a minimum CR of 20 and Ti of 350 K. Thus, blending high ethanol contents in a diesel engine can be applied by advancing the injection, increasing the CR, and increasing the ambient temperature. From the emission comparison, the most suitable mixtures that can be operated in the engine without modification is D50E25B25, and the most appropriate modification on the engine is by increasing the ambient temperature at 350 K.


2020 ◽  
pp. 146808742096085
Author(s):  
J Valero-Marco ◽  
B Lehrheuer ◽  
JJ López ◽  
S Pischinger

The approach of this research is to enlarge the knowledge about the methodologies to increase the maximum achievable load degree in the context of gasoline CAI engines. This work is the continuation of a previous work related to the study of the water injection effect on combustion, where this strategy was approached. The operating strategies to introduce the water and the interconnected settings were deeply analyzed in order to optimize combustion and to evaluate its potential to increase the maximum load degree when operating in CAI. During these initial tests, the engine was configured to enhance the mixture autoignition. The compression ratio was high compared to a standard gasoline engine, and suitable fuel injection strategies were selected based on previous studies from the authors to maximize the reactivity of the mixture, and get a stable CAI operation. Once water injection proved to provide encouraging results, the next step dealt in this work, was to go deeper and explore its effects when the engine configuration is more similar to a conventional gasoline engine, trying to get CAI combustion closer to production engines. This means, mainly, lower compression ratios and different fuel injection strategies, which hinders CAI operation. Finally, since all the previous works were performed at constant engine speed, the engine speed was also modified in order to see the applicability of the defined strategies to operate under CAI conditions at other operating conditions. The results obtained show that all these modifications are compatible with CAI operation: the required compression ratio can be reduced, in some cases the injection strategies can be simplified, and the increase of the engine speed leads to better conditions for CAI combustion. Thanks to the analysis of all this data, the different key parameters to manage this combustion mode are identified and shown in the paper.


Sign in / Sign up

Export Citation Format

Share Document