Estimation of End of Life of Lithium-Ion Battery Based on Artificial Neural Network and Machine Learning Techniques

2021 ◽  
Author(s):  
Kothala Lahari ◽  
Minakshi Sharma ◽  
Kapil Baidya
Author(s):  
James A. Tallman ◽  
Michal Osusky ◽  
Nick Magina ◽  
Evan Sewall

Abstract This paper provides an assessment of three different machine learning techniques for accurately reproducing a distributed temperature prediction of a high-pressure turbine airfoil. A three-dimensional Finite Element Analysis thermal model of a cooled turbine airfoil was solved repeatedly (200 instances) for various operating point settings of the corresponding gas turbine engine. The response surface created by the repeated solutions was fed into three machine learning algorithms and surrogate model representations of the FEA model’s response were generated. The machine learning algorithms investigated were a Gaussian Process, a Boosted Decision Tree, and an Artificial Neural Network. Additionally, a simple Linear Regression surrogate model was created for comparative purposes. The Artificial Neural Network model proved to be the most successful at reproducing the FEA model over the range of operating points. The mean and standard deviation differences between the FEA and the Neural Network models were 15% and 14% of a desired accuracy threshold, respectively. The Digital Thread for Design (DT4D) was used to expedite all model execution and machine learning training. A description of DT4D is also provided.


Author(s):  
Bhavesh Patel

Machine learning techniques are used by many organizations to analyze the data and finding some meaningful hidden pattern from the data, this process is useful by an organization to take the decision making process. Various organizations used like marketing, health care, software organization and education institute etc used it in decision making. We have used machine learning techniques to enhance the performance of students. It will be ultimately used by educational institute to improve the status of educational institute. This research paper includes Naïve Bayes (NB), Logistic Regression (LR), Artificial Neural Network(ANN) and Decision Tree machine learning techniques. Performance of these models have been compared using accuracy measures parameters and ROC index. This research paper has used various parameters like academic performance and demographic information to build the model. In addition to judge the performance also used some additional parameters to measure the performance like F-measure, precision, error rate and recall. The dataset is collected using survey methodology to build the model. As a conclusion found that the Artificial Neural Network model get the best performance among all the models.


2018 ◽  
Vol 13 (5) ◽  
pp. 625-630 ◽  
Author(s):  
Arne Jaspers ◽  
Tim Op De Beéck ◽  
Michel S. Brink ◽  
Wouter G.P. Frencken ◽  
Filip Staes ◽  
...  

Purpose: Machine learning may contribute to understanding the relationship between the external load and internal load in professional soccer. Therefore, the relationship between external load indicators (ELIs) and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group and individual level. Methods: Training data were collected from 38 professional soccer players over 2 seasons. The external load was measured using global positioning system technology and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using 2 machine learning techniques, artificial neural networks and least absolute shrinkage and selection operator (LASSO) models, and 1 naive baseline method. The predictions were based on a large set of ELIs. Using each technique, 1 group model involving all players and 1 individual model for each player were constructed. These models’ performance on predicting the reported RPE values for future training sessions was compared with the naive baseline’s performance. Results: Both the artificial neural network and LASSO models outperformed the baseline. In addition, the LASSO model made more accurate predictions for the RPE than did the artificial neural network model. Furthermore, decelerations were identified as important ELIs. Regardless of the applied machine learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual models. Conclusions: Machine learning techniques may have added value in predicting RPE for future sessions to optimize training design and evaluation. These techniques may also be used in conjunction with expert knowledge to select key ELIs for load monitoring.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1927 ◽  
Author(s):  
Han-Shin Jo ◽  
Chanshin Park ◽  
Eunhyoung Lee ◽  
Haing Kun Choi ◽  
Jaedon Park

Although various linear log-distance path loss models have been developed for wireless sensor networks, advanced models are required to more accurately and flexibly represent the path loss for complex environments. This paper proposes a machine learning framework for modeling path loss using a combination of three key techniques: artificial neural network (ANN)-based multi-dimensional regression, Gaussian process-based variance analysis, and principle component analysis (PCA)-aided feature selection. In general, the measured path loss dataset comprises multiple features such as distance, antenna height, etc. First, PCA is adopted to reduce the number of features of the dataset and simplify the learning model accordingly. ANN then learns the path loss structure from the dataset with reduced dimension, and Gaussian process learns the shadowing effect. Path loss data measured in a suburban area in Korea are employed. We observe that the proposed combined path loss and shadowing model is more accurate and flexible compared to the conventional linear path loss plus log-normal shadowing model.


2017 ◽  
Vol 12 (S333) ◽  
pp. 39-42
Author(s):  
Hayato Shimabukuro ◽  
Benoit Semelin

AbstractThe 21cm signal at epoch of reionization (EoR) should be observed within next decade. We expect that cosmic 21cm signal at the EoR provides us both cosmological and astrophysical information. In order to extract fruitful information from observation data, we need to develop inversion method. For such a method, we introduce artificial neural network (ANN) which is one of the machine learning techniques. We apply the ANN to inversion problem to constrain astrophysical parameters from 21cm power spectrum. We train the architecture of the neural network with 70 training datasets and apply it to 54 test datasets with different value of parameters. We find that the quality of the parameter reconstruction depends on the sensitivity of the power spectrum to the different parameter sets at a given redshift and also find that the accuracy of reconstruction is improved by increasing the number of given redshifts. We conclude that the ANN is viable inversion method whose main strength is that they require a sparse extrapolation of the parameter space and thus should be usable with full simulation.


2018 ◽  
Author(s):  
Behrouz Alizadeh Savareh ◽  
Azadeh Bashiri ◽  
Ali Behmanesh ◽  
Gholam Hossein Meftahi ◽  
Boshra Hatef

Introduction: Sleep scoring is an important step in the treatment of sleep disorders. Manual annotation of sleep stages is time-consuming and experience-relevant and, therefore, needs to be done using machine learning techniques. methods: Sleep-edf polysomnography was used in this study as a dataset. Support Vector Machines and Artificial Neural Network performance were compared in sleep scoring using wavelet tree features and neighborhood component analysis. Results: Neighboring component analysis as a combination of linear and non-linear feature selection method had a substantial role in feature dimension reduction. Artificial neural network and support vector machine achieved 90.30% and 89.93% accuracy respectively. Discussion and Conclusion: Similar to the state of the art performance, introduced method in the present study achieved an acceptable performance in sleep scoring. Furthermore, its performance can be enhanced using a technique combined with other techniques in feature generation and dimension reduction. It is hoped that, in the future, intelligent techniques can be used in the process of diagnosing and treating sleep disorders.


Sign in / Sign up

Export Citation Format

Share Document