BRAKES-and Brake Lining Characteristics

1950 ◽  
Author(s):  
J.G. Oetzel
Keyword(s):  
1971 ◽  
Vol 93 (4) ◽  
pp. 1225-1228 ◽  
Author(s):  
W. L. Starkey ◽  
T. G. Foster ◽  
S. M. Marco

A new design parameter, friction-instability, is defined in this paper. Friction-instability is a variation in the coefficient of friction which may occur at any time during the life of a brake lining. A friction-index is defined which measures this variation. A lining which has a high friction index may tend to cause an automobile to swerve either to the right or to the left. A unique experimental facility is described by means of which the friction-instability characteristics of brake linings can be measured. Test results using this facility are presented and interpreted. The friction-index is proposed as a new parameter which should be taken into consideration when brakes are designed and, developed. This index should be particularly useful as a quality control device to insure that machines which use mass-produced braking systems will perform in a safe and effective manner.


Author(s):  
G Asmoro ◽  
E Surojo ◽  
Dody Ariawan ◽  
N Muhayat ◽  
W W Raharjo
Keyword(s):  

2011 ◽  
Vol 201-203 ◽  
pp. 314-317
Author(s):  
Dong Seop Han ◽  
Geun Jo Han ◽  
Dong Hwan Choi

The brake system is very important part of the machine working. The mooring winch brake holds the ship on the harbor. But sometimes it appeared the excessive stress and brake lining would be broken. So it is necessary to change the shape of brake system with improve the durability of brake band. In this research, three models, such as a single brake shoe with a uniform thickness, a dual brake shoe with a uniform thickness, and a dual brake shoe with different thickness, are adopted as analytic model. In order to evaluate the strength of band brake according to the shape of brake shoe, the finite element analysis for three models is carried out by using ANSYS Workbench.


1989 ◽  
Vol 16 (3) ◽  
pp. 211-218 ◽  
Author(s):  
A. Filiatrault ◽  
S. Cherry

A novel friction damping system for the aseismic design of framed buildings has been proposed by Canadian researchers. The system has been shown experimentally to perform very well and is an exciting development in earthquake resistant design.The design of a building equipped with the friction damping system is achieved by determining the optimum slip load distribution to minimize structural response. The optimum slip load distribution is usually determined using the general nonlinear dynamic computer program DRAIN-2D, which requires extensive computer time and is not practical for most design offices.This paper describes a new, efficient, numerical modelling approach for the design of friction damped braced frames. The hysteretic properties of the friction devices are derived theoretically and included in a friction damped braced frame analysis program, which is adaptable to a microcomputer environment. The optimum slip load distribution is determined by minimizing a relative performance index derived from energy concepts. The new numerical approach is much more economical to use than DRAIN-2D and is of great value for the practical design of friction damped braced frames. Key words: braced frames, brake lining, performance index, damping, dynamics, earthquakes, energy, friction.


Sign in / Sign up

Export Citation Format

Share Document