scholarly journals Determination of metabolites of phloretin in rats using UHPLC-LTQ-Orbitrap mass spectrometry

2021 ◽  
Vol 18 (10) ◽  
pp. 2167-2173
Author(s):  
Fang Ping Wu ◽  
Liang Hong Liu ◽  
Ping Jin ◽  
Hong Pu ◽  
Zu Fu Yao ◽  
...  

Purpose: To study the metabolites of phloretin in vivo using ultra-high performance liquid chromatography linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap). Methods: After administration of phloretin (50 mg/kg; oral route) to six rats, blood samples were taken from each animal. Each sample was then subjected to solid-phase extraction to prepare it for chromatographic/spectroscopic analysis. Finally, each sample was analyzed using UHPLC-LTQOrbitrap with a negative-mode electrospray ionization source. Results: Based on mass measurements, chromatographic retention times, and MS2 fragmentation ions, we detected and identified phloretin and 16 metabolites of the drug in vivo in rats. Metabolic reactions of phloretin included glucosylation and glucuronide conjugation, diglucuronide conjugation, glucosylation and sulfate conjugation, sulfate conjugation, glucuronide conjugation, and glucosylation and hydroxylation. Conclusion: The findings provide a better understanding of phloretin metabolism and metabolites, and new information about their effective forms, pharmacological actions, metabolic fate, and toxic actions in vivo.

2003 ◽  
Vol 9 (2) ◽  
pp. 105-116 ◽  
Author(s):  
Alexandr Jegorov ◽  
Béla Paizs ◽  
Martin Žabka ◽  
Marek Kuzma ◽  
Vladimír Havlíček ◽  
...  

High-performance liquid chromatography and tandem mass spectrometry (HPLC/MS/MS) was used for the detection of cyclic hexadepsipeptides roseotoxins produced by Trichothecium roseum. Roseotoxins were found in both submerged standard cultivation on Czapek–Dox medium and in vivo cultivation extract obtained from an apple. Roseotoxin chromatographic profiles from these two experiments were compared. Product-ion collision-induced dissociation (CID) spectra obtained on an ion trap (electrospray ionisation, ESI) were used for the identification of natural roseotoxins A, B, C and of minor destruxins A and B. The dissociation behavior of roseotoxins is discussed in terms of a fragmentation scheme proposed for describing the dissociation pathways of cyclic peptides. This scheme involves opening of the cyclopeptide ring via formation of oxazolone derivatives and fragmentation of the resulting linear species, which have a free N-terminus and an oxazolone ring at the C-terminus. Some aspects of this fragmentation scheme are underlined by modeling the dissociation channels of roseotoxin A using quantum chemical calculations. The structures of roseotoxin A and destruxin B were verified by nuclear magnetic resonance (NMR) spectroscopy. Structures of three new minor natural roseotoxins [Val4]RosA, [MeLxx4]RosA and [MeLxx4]RosB were deduced by ion cyclotron resonance Fourier transform mass spectrometry (ICR-FT-MS) and ion trap tandem mass spectrometry by examining the pre-separated roseotoxin fraction.


Sign in / Sign up

Export Citation Format

Share Document