Recirculating Immunomagnetic Separation and Optimal Enrichment Conditions for Enhanced Detection and Recovery of Low Levels of Escherichia coli O157:H7 from Fresh Leafy Produce and Surface Water

2007 ◽  
Vol 70 (12) ◽  
pp. 2717-2724 ◽  
Author(s):  
SUNEE HIMATHONGKHAM ◽  
MARY LEE DODD ◽  
JENNY K. YEE ◽  
DAVID K. LAU ◽  
RAYMOND G. BRYANT ◽  
...  

The objective of this study was to develop a rapid, simple method for enhanced detection and isolation of low levels of Escherichia coli O157:H7 from leafy produce and surface water using recirculating immunomagnetic separation (RIMS) coupled with real-time PCR and a standard culture method. The optimal enrichment conditions for the method also were determined. Analysis of real-time PCR data (CT values) suggested that incubation of lettuce and spinach leaves rather than rinsates provides better enrichment of E. coli O157:H7. Enrichment of lettuce or spinach leaves at 42°C for 5 h provided better detection than enrichment at 37°C. Extended incubation of surface water for 20 h at 42°C did not improve the detection. The optimized enrichment conditions were also employed with modified Moore swabs, which were used to sample flowing water sites. Positive isolation rates and real-time PCR results indicated an increased recovery of E. coli O157:H7 from all samples following the application of RIMS. Under these conditions, the method provided detection and/or isolation of E. coli O157:H7 at levels as low as 0.07 CFU/g of lettuce, 0.1 CFU/g of spinach, 6 CFU/100 ml of surface water, and 9 CFU per modified Moore swab. During a 6-month field study, modified Moore swabs yielded high isolation rates when deployed in natural watershed sites. The method used in this study was effective for monitoring E. coli O157:H7 in the farm environment, during postharvest processing, and in foodborne outbreak investigations.

2007 ◽  
Vol 70 (6) ◽  
pp. 1366-1372 ◽  
Author(s):  
LUXIN WANG ◽  
YONG LI ◽  
AZLIN MUSTAPHA

The objective of this study was to establish a multiplex real-time PCR for the simultaneous quantitation of Escherichia coli O157:H7, Salmonella, and Shigella. Genomic DNA for the real-time PCR was extracted by the boiling method. Three sets of primers and corresponding TaqMan probes were designed to target these three pathogenic bacteria. Multiplex real-time PCR was performed with TaqMan Universal PCR Master Mix in an ABI Prism 7700 Sequence Detection System. Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log CFU per milliliter) via linear regression. With optimized conditions, the quantitative detection range of the real-time multiplex PCR for pure cultures was 102 to 109 CFU/ml for E. coli O157:H7, 103 to 109 CFU/ml for Salmonella, and 101 to 108 CFU/ml for Shigella. When the established multiplex real-time PCR system was applied to artificially contaminated ground beef, the detection limit was 105 CFU/g for E. coli O157:H7, 103 CFU/g for Salmonella, and 104 CFU/g for Shigella. Immunomagnetic separation (IMS) was further used to separate E. coli O157:H7 and Salmonella from the beef samples. With the additional use of IMS, the detection limit was 103 CFU/g for both pathogens. Results from this study showed that TaqMan real-time PCR, combined with IMS, is potentially an effective method for the rapid and reliable quantitation of E. coli O157:H7, Salmonella, and Shigella in food.


2006 ◽  
Vol 52 (5) ◽  
pp. 482-488 ◽  
Author(s):  
Rebekka R.E Artz ◽  
Lisa M Avery ◽  
Davey L Jones ◽  
Ken Killham

The detection sensitivity and potential interference factors of a commonly used assay based on real-time polymerase chain reaction (PCR) for Escherichia coli O157:H7 using eae gene-specific primers were assessed. Animal wastes and soil samples were spiked with known replicate quantities of a nontoxigenic strain of E. coli O157:H7 in a viable or dead state and as unprotected DNA. The detection sensitivity and accuracy of real-time PCR for E. coli O157:H7 in animal wastes and soil is low compared to enrichment culturing. Nonviable cells and unprotected DNA were shown to produce positive results in several of the environmental samples tested, leading to potential overestimates of cell numbers due to prolonged detection of nonviable cells. This demonstrates the necessity for the specific calibration of real-time PCR assays in environmental samples. The accuracy of the eae gene–based detection method was further evaluated over time in a soil system against an activity measurement, using the bioluminescent properties of an E. coli O157:H7 Tn5luxCDABE construct. The detection of significant numbers of viable but nonculturable (VBNC) as well as nonviable and possibly physically protected cells as shown over a period of 90 days further complicates the use of real-time PCR assays for quick diagnostics in environmental samples and infers that enrichment culturing is still required for the final verification of samples found positive by real-time PCR methods.Key words: Escherichia coli O157:H7, real-time PCR, animal waste, soil, VBNC.


2009 ◽  
Vol 75 (11) ◽  
pp. 3593-3597 ◽  
Author(s):  
Bonnie Mull ◽  
Vincent R. Hill

ABSTRACT Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) outbreaks have revealed the need for improved analytical techniques for environmental samples. Ultrafiltration (UF) is increasingly recognized as an effective procedure for concentrating and recovering microbes from large volumes of water and treated wastewater. This study describes the application of hollow-fiber UF as the primary step for concentrating EHEC O157:H7 seeded into 40-liter samples of surface water, followed by an established culture/immunomagnetic-separation (IMS) method and a suite of real-time PCR assays. Three TaqMan assays were used to detect the stx1, stx2, and rfbE gene targets. The results from this study indicate that approximately 50 EHEC O157:H7 cells can be consistently recovered from a 40-liter surface water sample and detected by culture and real-time PCR. Centrifugation was investigated and shown to be a viable alternative to membrane filtration in the secondary culture/IMS step when water quality limits the volume of water that can be processed by a filter. Using multiple PCR assay sets to detect rfbE, stx1, and stx2 genes allowed for specific detection of EHEC O157:H7 from strains that do not possess all three genes. The reported sample collection and analysis procedure should be a sensitive and effective tool for detecting EHEC O157:H7 in response to outbreaks of disease associated with contaminated water.


2015 ◽  
Vol 98 (5) ◽  
pp. 1301-1314 ◽  
Author(s):  
Jonathan Cloke ◽  
Erin Crowley ◽  
Patrick Bird ◽  
Ben Bastin ◽  
Jonathan Flannery ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Escherichia coli O157:H7 Assay is a new real-time PCR assay which has been validated through the AOAC Research Institute (RI) Performance Tested MethodsSM program for raw beef and produce matrixes. This validation study specifically validated the assay with 375 g 1:4 and 1:5 ratios of raw ground beef and raw beef trim in comparison to the U.S. Department of Agriculture, Food Safety Inspection Service, Microbiology Laboratory Guidebook (USDS-FSIS/MLG) reference method and 25 g bagged spinach and fresh apple juice at a ratio of 1:10, in comparison to the reference method detailed in the International Organization for Standardization 16654:2001 reference method. For raw beef matrixes, the validation of both 1:4 and 1:5 allows user flexibility with the enrichment protocol, although which of these two ratios chosen by the laboratory should be based on specific test requirements. All matrixes were analyzed by Thermo Fisher Scientific, Microbiology Division, Vantaa, Finland, and Q Laboratories Inc, Cincinnati, Ohio, in the method developer study. Two of the matrixes (raw ground beef at both 1:4 and 1:5 ratios) and bagged spinach were additionally analyzed in the AOAC-RI controlled independent laboratory study, which was conducted by Marshfield Food Safety, Marshfield, Wisconsin. Using probability of detection statistical analysis, no significant difference was demonstrated by the SureTect kit in comparison to the USDA FSIS reference method for raw beef matrixes, or with the ISO reference method for matrixes of bagged spinach and apple juice. Inclusivity and exclusivity testing was conducted with 58 E. coli O157:H7 and 54 non-E. coli O157:H7 isolates, respectively, which demonstrated that the SureTect assay was able to detect all isolates of E. coli O157:H7 analyzed. In addition, all but one of the nontarget isolates were correctly interpreted as negative by the SureTect Software. The single isolate giving a positive result was an E. coli O157:NM isolate. Nonmotile isolates of E. coli O157 have been demonstrated to still contain the H7 gene; therefore, this result is not unexpected. Robustness testing was conducted to evaluate the performance of the SureTect assay with specific deviations to the assay protocol, which were outside the recommended parameters and which are open to variation. This study demonstrated that the SureTect assay gave reliable performance. A final study to verify the shelf life of the product, under accelerated conditions was also conducted.


2004 ◽  
Vol 50 (12) ◽  
pp. 1007-1014 ◽  
Author(s):  
A Mark Ibekwe ◽  
Pamela M Watt ◽  
Peter J Shouse ◽  
Catherine M Grieve

One of the most common vehicles by which Escherichia coli O157:H7 may be introduced into crops is contaminated irrigation water. Water contamination is becoming more common in rural areas of the United States as a result of large animal operations, and up to 40% of tested drinking-water wells are contaminated with E. coli. In this study, 2 contrasting soil samples were inoculated with E. coli O157:H7 expressing green fluorescent protein through irrigation water. Real-time PCR and culture methods were used to quantify the fate of this pathogen in phyllosphere (leaf surface), rhizosphere (volume of soil tightly held by plant roots), and non-rhizosphere soils. A real-time PCR assay was designed with the eae gene of E. coli O157:H7. The probe was incorporated into real-time PCR containing DNA extracted from the phyllosphere, rhizosphere, and non-rhizosphere soils. The detection limit for E. coli O157:H7 quantification by real-time PCR was 1.2 × 103in the rhizosphere, phyllosphere, and non-rhizosphere samples. E. coli O157:H7 concentrations were higher in the rhizosphere than in the non-rhizosphere soils and leaf surfaces, and persisted longer in clay soil. The persistence of E. coli O157:H7 in phyllosphere, rhizosphere, and non-rhizosphere soils over 45 days may play a significant part in the recontamination cycle of produce in the environment. Therefore, the rapidity of the real-time PCR assay may be a useful tool for quantification and monitoring of E. coli O157:H7 in irrigation water and on contaminated fresh produce.Key words: real-time PCR, Escherichia coli O157:H7, irrigation, survival, quantification.


2012 ◽  
Vol 1 (2) ◽  
Author(s):  
Hilda Nyati ◽  
Annet Heuvelink ◽  
Caroliene Van Heerwaarden ◽  
Ans Zwartkruis

Escherichia coli O157 detection limits in artificially contaminated beef and cattle faeces samples were determined using Dynabeads anti E. coli O157 immunomagnetic beads, VIDAS-UP, VIDAS-ICE, and real-time PCR (GeneDisc and LightCycler) systems. Dynabeads anti-E. coli O157 immunomagnetic separation (IMS) and the GeneDisc cycler were the most sensitive methods, and could detect an initial 1 CFU in 25g beef samples after 6h of incubation in modified tryptone soya broth with novobiocin (mTSB+n) or buffered peptone water (BPW). The VIDAS-UP method could detect an initial 10 CFU, while VIDAS-ICE and the LightCycler methods could only detect an initial 100 CFU. Higher detection rates were achieved with 18 hour incubations, where an initial 1 CFU in a 25g sample could be detected with all five methods. For cattle faeces enrichments, Dynabeads anti-E. coli O157 IMS could detect an initial 1 CFU after a 6 h incubation in mTSB+n, while the VIDAS-UP and VIDAS-ICE methods could detect an initial 10 CFU and both PCR methods could only detect an initial 100 CFU. Detection rates were lower in BPW, compared to mTSB+n, with thresholds of 100 CFU for VIDAS-ICE, VIDAS-UP and GeneDisc methods, and >100 CFU for the LightCycler method.


2015 ◽  
Vol 78 (9) ◽  
pp. 1729-1732 ◽  
Author(s):  
JOSEPHINE D. GREVE ◽  
MARK S. ZIETLOW ◽  
KEVIN M. MILLER ◽  
JAY L. E. ELLINGSON

A total of 720 whole, romaine lettuce heads were purchased from retail locations in the Upper Midwest and assessed for coliform and Escherichia coli contamination and for the presence of E. coli O157:H7. During a 16-month period (August 2010 through December 2011), coliform and E. coli counts were enumerated on Petrifilm, and the presence of E. coli O157:H7 and the virulence gene eae was evaluated by real-time PCR (qPCR). Over half (400 of 720) of the lettuce samples were processed with an immunomagnetic separation step before the qPCR assay. All retail lettuce samples were negative for E. coli O157:H7 when tested with the R.A.P.I.D. LT qPCR targeting a region of the O-antigen, and only two (0.28%) were positive for the eae gene when tested with LightCycler qPCR. On Petrifilm, coliform counts of most lettuce samples (96.4%) were between <101 and 103 CFU/g, and E. coli counts for nearly all lettuce samples (98.2%) were <101 CFU/g. No seasonal trend in coliform and E. coli counts was observed throughout the examination period nor was a difference in coliform counts observed between packaged and nonpackaged lettuce heads. These results contribute to the limited recorded data and understanding of microbial contamination of whole romaine lettuce heads purchased from retail locations, specifically revealing the absence of E. coli O157:H7 and low levels of contamination with coliforms and other E. coli strains.


2017 ◽  
Author(s):  
◽  
Yuejiao Liu

Foodborne illnesses associated with Salmonella and Escherichia coli O157:H7 have become world-wide public-health problems. Conventional methods for the identification of foodborne pathogens are tedious, expensive, and time-consuming. Alternatively, real-time PCR (RT-PCR) as a promising method to detect pathogens in food samples, has recently been widely applied in food safety areas. High Resolution Meltcurve (HRM) analysis, performed immediately at the end of a real-time PCR, is able to yield a higher resolution plot compared with SYBR Green I PCR. HRM dyes completely saturate all amplicons without showing preferential bindings, making the results more clear and distinct. In this research, a multiplex real-time PCR targeting the invA, fimA and stn genes were developed to efficiently detect Salmonella in foods. Furthermore, HRM analysis is sensitive to any single mutation in PCR products, thus it was also applied in this study to distinguish E. coli O157 from other serogroups of E. coli by targeting the uidA gene. The specificity of primers used in this study was checked using many different strains. Results of artificially contaminated foods presented a high sensitivity of the HRM detection methods. Due to its low cost, simplicity of the approach and rapidness, HRM technology is highly competitive with relaxed-condition PCR and probe-based PCR. Besides, an HRM assay can be performed on generic real-time PCR instrumentations found in many laboratories. In conclusion, HRM-based PCR assay are proved to be efficient methods in foodborne pathogen detections.


Sign in / Sign up

Export Citation Format

Share Document