Effects of Vacuum or Modified Atmosphere Packaging in Combination with Irradiation for Control of Escherichia coli O157:H7 in Ground Beef Patties

2011 ◽  
Vol 74 (12) ◽  
pp. 2018-2023 ◽  
Author(s):  
LI L. KUDRA ◽  
JOSEPH G. SEBRANEK ◽  
JAMES S. DICKSON ◽  
AUBREY F. MENDONCA ◽  
ELAINE M. LARSON ◽  
...  

The efficacy of controlling Escherichia coli O157:H7 in ground beef patties by combining irradiation with vacuum packaging or modified atmosphere packaging (MAP) was investigated. Fresh ground beef patties were inoculated with a five-strain cocktail of E. coli O157:H7 at 5 log CFU/g. Single patties, packaged with vacuum or high-CO2 MAP (99.6% CO2 plus 0.4% CO), were irradiated at 0 (control), 0.5, 1.0, or 1.5 kGy. The D10-value for this pathogen was 0.47 ± 0.02 kGy in vacuum and 0.50 ± 0.02 kGy in MAP packaging. Irradiation with 1.5 kGy reduced E. coli O157:H7 by 3.0 to 3.3 log, while 0.5 and 1.0 kGy achieved reductions of 0.7 to 1.0, and 2.0 to 2.2 log, respectively. After irradiation, the numbers of survivors of this pathogen on beef patties in refrigerated storage (4°C) did not change significantly for 6 weeks. Temperature abuse (at 25°C) resulted in growth in vacuum-packaged patties treated with 0.5 and 1.5 kGy, but no growth in MAP packages. This study demonstrated that combining irradiation with MAP was similar in effectiveness to irradiation with vacuum packaging for control of E. coli O157:H7 in ground beef patties during refrigerated storage. However, high-CO2 MAP appeared to be more effective after temperature abuse.

2011 ◽  
Vol 74 (5) ◽  
pp. 718-726 ◽  
Author(s):  
MANAN SHARMA ◽  
SUDESNA LAKSHMAN ◽  
SEAN FERGUSON ◽  
DAVID T. INGRAM ◽  
YAGUANG LUO ◽  
...  

Fresh-cut leafy greens contaminated with Escherichia coli O157:H7 have caused foodborne outbreaks. Packaging conditions, coupled with abusive storage temperatures of contaminated lettuce, were evaluated for their effect on the potential virulence of E. coli O157:H7. Shredded lettuce was inoculated with 5.58 and 3.98 log CFU E. coli O157:H7 per g and stored at 4 and 15°C, respectively, for up to 10 days. Lettuce was packaged under treatment A (modified atmosphere packaging conditions used for commercial fresh-cut produce, in gas-permeable film with N2), treatment B (near–ambient air atmospheric conditions in a gas-permeable film with microperforations), and treatment C (high-CO2 and low-O2 conditions in a gas-impermeable film). E. coli O157:H7 populations from each treatment were determined by enumeration of numbers on MacConkey agar containing nalidixic acid. RNA was extracted from packaged lettuce for analysis of expression of virulence factor genes stx2, eae, ehxA, iha, and rfbE. E. coli O157:H7 populations on lettuce at 4°C under all treatments decreased, but most considerably so under treatment B over 10 days. At 15°C, E. coli O157:H7 populations increased by at least 2.76 log CFU/g under all treatments. At 15°C, expression of eae and iha was significantly greater under treatment B than it was under treatments A and C on day 3. Similarly, treatment B promoted significantly higher expression of stx2, eae, ehxA, and rfbE genes on day 10, compared with treatments A and C at 15°C. Results indicate that storage under near–ambient air atmospheric conditions can promote higher expression levels of O157 virulence factors on lettuce, and could affect the severity of E. coli O157:H7 infections associated with leafy greens.


2006 ◽  
Vol 69 (8) ◽  
pp. 1802-1807 ◽  
Author(s):  
K. HARRIS ◽  
M. F. MILLER ◽  
G. H. LONERAGAN ◽  
M. M. BRASHEARS

A study was conducted to determine if acidified sodium chlorite (1,200 ppm) and acetic and lactic acids (2 and 4%) were effective in reducing foodborne pathogens in beef trim prior to grinding in a simulated processing environment. The reduction of Salmonella Typhimurium and Escherichia coli O157:H7 at high (4.0 log CFU/g) and low (1.0 log CFU/g) inoculation doses was evaluated at various processing steps, including the following: (i) in trim just after treatment application, (ii) in ground beef just after grinding, (iii) in ground beef 24 h after refrigerated storage, (iv) in ground beef 5 days after refrigerated storage, and (v) in ground beef 30 days after frozen storage. All antimicrobial treatments reduced the pathogens on the trim inoculated with the lower inoculation dose to nondetectable numbers in the trim and in the ground beef. There were significant reductions of both pathogens in the trim and in the ground beef inoculated with the high inoculation doses. On the trim itself, E. coli O157:H7 and Salmonella Typhimurium were reduced by 1.5 to 2.0 log cycles, with no differences among all treatments. In the ground beef, the organic acids were more effective in reducing both pathogens than the acidified sodium chlorite immediately after grinding, but after 1 day of storage, there were no differences among treatments. Overall, in the ground beef, there was a 2.5-log reduction of E. coli O157:H7 and a 1.5-log reduction of Salmonella Typhimurium that was sustained over time in refrigerated and frozen storage. Very few sensory differences between the control samples and the treated samples were detected by a consumer panel. Thus, antimicrobial treatments did not cause serious adverse sensory changes. Use of these antimicrobial treatments can be a promising intervention available to ground beef processors who currently have few interventions in their process.


1999 ◽  
Vol 62 (11) ◽  
pp. 1243-1247 ◽  
Author(s):  
SUSAN E. ANSAY ◽  
KIM A. DARLING ◽  
CHARLES W. KASPAR

The survival of Escherichia coli O157:H7 and of a nonpathogenic control strain of E. coli was monitored in raw ground beef that was stored at 2°C for 4 weeks, −2°C for 4 weeks, 15°C for 4 h and then −2°C for 4 weeks, and −20°C. Irradiated ground beef was inoculated with one E. coli control strain or with a four-strain cocktail of E. coli O157:H7 (ca. 105 CFU/g), formed into patties (30 to 45 g), and stored at the appropriate temperature. The numbers of the E. coli control strain decreased by 1.4 log10 CFU/g, and pathogen numbers declined 1.9 log10 CFU/g when patties were stored for 4 weeks at 2°C. When patties were stored at −2°C for 4 weeks, the numbers of the E. coli control strain and the serotype O157:H7 strains decreased 2.8 and 1.5 log10 CFU/g, respectively. Patties stored at 15°C for 4 h prior to storage at −2°C for 4 weeks resulted in 1.6 and 2.7 log10–CFU/g reduction in the numbers of E. coli and E. coli O157:H7, respectively. Storage of retail ground beef at 15°C for 4 h (tempering) did not result in increased numbers of colony forming units per gram, as determined with violet red bile, MRS lactobacilli, and plate-count agars. Frozen storage (−20°C) of ground-beef patties that had been inoculated with a single strain of E. coli resulted in approximately a 1 to 2 log10–CFU/g reduction in the numbers of the control strain and individual serotype O157:H7 strains after 1 year. There was no significant difference between the survival of the control strain and the O157:H7 strains, nor was there a difference between O157:H7 strains. These data demonstrate that tempering of ground-beef patties prior to low-temperature storage accelerated the decline in the numbers of E. coli O157:H7.


2008 ◽  
Vol 71 (4) ◽  
pp. 811-815 ◽  
Author(s):  
PILAR MORALES ◽  
JAVIER CALZADA ◽  
MARTA ÁVILA ◽  
MANUEL NUÑEZ

The effect of single- and multiple-cycle high-pressure treatments on the survival of Escherichia coli CECT 4972, a strain belonging to the O157:H7 serotype, in ground beef was investigated. Beef patties were inoculated with 107 CFU/g E. coli O157:H7, and held at 4°C for 20 h before high-pressure treatments. Reduction of the E. coli O157:H7 population by single-cycle treatments at 400 MPa and 12°C ranged from 0.82 log CFU/g for a 1-min cycle to 4.39 log CFU/g for a 20-min cycle. Multiple-cycle treatments were very effective, with four 1-min cycles at 400 MPa and 12°C reducing the E. coli O157:H7 population by 4.38 log CFU/g, and three 5-min cycles by 4.96 log CFU/g. The color parameter L* increased significantly with high-pressure treatments in the interior and the exterior of beef patties, whereas a* decreased in the interior, and b* increased in the exterior—changes that might diminish consumer acceptance of the product. Kramer shear force and energy were generally higher in pressurized than in control ground beef. Maximum values for these texture parameters, which corresponded to tougher patties, were reached after one 10-min cycle in the case of single-cycle treatments or two 5-min cycles in the case of multiple-cycle treatments. High-pressure treatments had no significant effect on Warner-Bratzler shear force.


Author(s):  
Özgür Çadırcı ◽  
Ali Gücükoğlu ◽  
Göknur Terzi Güzel ◽  
Tolga Uyanık ◽  
Abdulaziz Abdulahi ◽  
...  

Shiga-like toxin producing Escherichia coli is still an important public issue which causes extremely dangerous health problems. This study was planned in order to examine the inhibitory effect of Modified Atmosphere Packaging application on E. coli O157 and O157: H7. The purposes of the present study were to detect E. coli O157 and O157: H7 strains from ground and cubed beef. A total of 100 MAP cattle meat products (50 minced meat, 50 meat cubes) were collected from the markets and butchers in Samsun province between May and October 2013. According to results, 1(1/50-2%) E. coli O157 and 1(1/50-2%) E. coli O157: H7 strains isolated from 50 ground beef samples, while 1 (1/50-2%) E. coli O157 strain was identified from 50 cubed beef samples. It was determined that E. coli O157 isolate obtained from the MAP ground beef carried stx1, stx2 genes; E. coli O157: H7 isolate carried stx1, stx2, eaeA and hylA genes while E. coli O157 isolate obtained from the MAP cubed meat only carried the stx2 gene. In antibiogram test, both E. coli O157 isolates were resistant to streptomycin and one E. coli O157: H7 isolate was resistant to streptomycin, cephalothin and tetracycline. As a consequence; in order to protect public health, products should be kept in proper hygienic and technical conditions during sale and storage and use of uncontrolled antibiotics should be avoided.


1996 ◽  
Vol 59 (3) ◽  
pp. 230-237 ◽  
Author(s):  
TIMOTHY C. JACKSON ◽  
MARGARET D. HARDIN ◽  
GARY R. ACUFF

Stationary-phase cultures of Escherichia coli O157:H7 were inoculated into tryptic soy broth, sealed in vials, and stored at −18°C for 1, 8, and 15 days, or 3 or 15°C for 3, 6, and 9 h. Thermal resistance was determined at 55°C. Each storage treatment was repeated with additional holding at 23 or 30°C for 1, 2, 3, or 4 h prior to heating to simulate potential temperature abuse during handling. Cultures under treatments enabling the growth of E. coli O157:H7 were generally more heat sensitive than those held at temperatures which restricted growth or enabled growth to stationary phase. Cultures stored frozen (−18°C) without holding at elevated temperatures had greater heat resistance than those stored under refrigeration (3°C) or at 15°C. Subsequent holding of frozen cultures at 23 or 30°C resulted in a decrease in heat resistance. To determine whether these responses would be observed under typical commercial preparation procedures, ground beef patties were inoculated with E. coli O157:H7 and stored at 3 or 15°C for 9 h or at −18°C for 8 d and then held at 21 or 30°C for 0 or 4 h. Patties were grilled to an internal temperature of 54.4°C (130°F), 62.8°C (145°F), or 68.3°C (155°F). Cultures were most resistant in frozen patties, while cultures in patties stored at 15°C were the most heat sensitive. Holding patties at 21 or 30°C prior to grilling resulted in increased sensitivity. Storage and holding temperatures similar to those encountered in food service may influence the ability of E. coli O157:H7 to survive heat treatments.


2001 ◽  
Vol 64 (11) ◽  
pp. 1661-1666 ◽  
Author(s):  
M. UYTTENDAELE ◽  
E. JOZWIK ◽  
A. TUTENEL ◽  
L. DE ZUTTER ◽  
J. URADZINSKI ◽  
...  

The present study examined the effect of pH-independent acid resistance of Escherichia coli O157:H7 on efficacy of buffered lactic acid to decontaminate chilled beef tissue. A varied level of acid resistance was observed among the 14 strains tested. Eight strains were categorized as acid resistant, four strains as acid sensitive, and two strains demonstrated acid-inducible acid resistance. The survival of an acid-resistant (II/45/4) and acid-sensitive (IX/8/16) E. coli O157:H7 strain on chilled beef tissue treated with 1 and 2% buffered lactic acid, sterile water, or no treatment (control) was followed. A gradual reduction of E. coli O157:H7 was noticed during the 10 days of storage at 4°C for each of the treatments. Decontamination with 1 and 2% buffered lactic acid did not appreciably affect the pathogen. Differences in the pH-independent acid resistance of the strains had no effect on the efficacy of decontamination. The effect of modified atmosphere packaging (MAP) on survival of E. coli O157:H7 in red meat was also studied. MAP (40% CO2/60% N2) or vacuum did not significantly influence survival of E. coli O157:H7 on inoculated sliced beef (retail cuts) meat compared to packing in air. The relative small outgrowth of lactic acid bacteria during storage under vacuum for 28 days did not affect survival of E. coli O157:H7. Neither lactic acid decontamination nor vacuum or MAP packaging could enhance reduction of E. coli O157:H7 on beef, thus underlining the need for preventive measures to control the public health risk of E. coli O157:H7.


2008 ◽  
Vol 71 (3) ◽  
pp. 516-521 ◽  
Author(s):  
M. TURGIS ◽  
J. BORSA ◽  
M. MILLETTE ◽  
S. SALMIERI ◽  
M. LACROIX

Twenty-six different essential oils were tested for their efficiency to increase the relative radiosensitivity of Escherichia coli and Salmonella Typhi in medium-fat ground beef (23% fat). Ground beef was inoculated with E. coli O157:H7 or Salmonella (106 CFU/g), and each essential oil or one of their main constituents was added separately at a concentration of 0.5% (wt/wt). Meat samples (10 g) were packed under air or under modified atmosphere and irradiated at doses from 0 to 1 kGy for the determination of the D10-value of E. coli O157:H7, and from 0 to 1.75 kGy for the determination of the D10-value of Salmonella Typhi. Depending on the compound tested, the relative radiation sensitivity increased from 1 to 3.57 for E. coli O157:H7 and from 1 to 3.26 for Salmonella Typhi. Addition of essential oils or their constituents before irradiation also reduced the irradiation dose needed to eliminate both pathogens. In the presence of Chinese cinnamon or Spanish oregano essential oils, the minimum doses required to eliminate the bacteria were reduced from 1.2 to 0.35 and from 1.4 to 0.5 for E. coli O157:H7 and Salmonella Typhi, respectively. Cinnamon, oregano, and mustard essential oils were the most effective radiosensitizers.


1998 ◽  
Vol 61 (9) ◽  
pp. 1181-1183 ◽  
Author(s):  
JAY R. SAGE ◽  
STEVEN C. INGRAM

Survival of Escherichia coli O157:H7 strains QA 326, and ATCC 43889,43894, and 43895 after freezing (−20°C, 24 h) and thawing (4°C for 12 h, 23°C for 3 h, or microwave heating of 700 W for 120 s) in ground beef patties was determined by reference most probable number (MPN), hydrophobic grid membrane filter SD-39 agar, and sorbitol MacConkey agar (SMA) spread-plating methods. Populations decreased from 0.62 to 2.52 log10 CFU/g, with the extent varying significantly by strain. Strain QA 326 populations almost always decreased the most, up to 1.87 log10 CFU/g more than the least sensitive strain. Microwave heating was the most lethal thawing treatment for strain QA 326, and 4°C thawing was the most lethal treatment for strain ATCC 43894. Thawing treatments varied in relative lethality for the other two strains. For strain QA 326 (4°C and microwave thaw treatments) and strain ATCC 43889 (4 and 23°C thawing), the enumeration method significantly affected a population decrease. The SD-39 agar method best recovered strain QA 326 while the SD-39 agar method and the reference MPN method best recovered strain ATCC 43889 after 4 and 23°C thawing, respectively. The greatest difference in population decrease measured by any two methods was 0.58 log10 CFU/g. Results showed (i) a wide range in freeze-thaw sensitivity among E. coli O157:H7 strains, (ii) no thawing method had consistently and significantly greater lethality, and (iii) the reference MPN, SD-39 agar, and SMA methods differed little in ability to enumerate E. coli O157:H7.


2005 ◽  
Vol 68 (12) ◽  
pp. 2567-2570 ◽  
Author(s):  
F. CHIASSON ◽  
J. BORSA ◽  
M. LACROIX

This study was undertaken to evaluate the effect of 1.0% carvacrol and 0.1% tetrasodium pyrophosphate on the radiation D10 of Escherichia coli and Salmonella Typhi added to ground beef at a concentration of 105 CFU/g. The ground beef was then packaged under four different atmosphere conditions: air (78.1% N2, 20.9% O2, 0.036% CO2), 100% CO2, modified atmosphere (60% O2, 30% CO2, 10% N2) and vacuum. Samples were irradiated at doses of 0.1 to 0.6 kGy for E. coli and 0.5 to 2.0 kGy for Salmonella Typhi. Radiation D10-values of 0.126 and 0.526 kGy were observed for E. coli and Salmonella Typhi, respectively, when meat was packed under air. When meat was packed under modified atmosphere conditions, the radiation D10-values for E. coli and Salmonella Typhi were 0.086 and 0.221 kGy, respectively. The addition of carvacrol and tetrasodium pyrophosphate and the use of modified atmosphere packaging reduced the radiation D10-value from 0.126 to 0.046 kGy for E. coli and from 0.526 to 0.053 kGy for Salmonella Typhi. Under vacuum and 100% CO2 conditions, the radiation D10 reduction was not as great as that for the modified atmosphere regardless of the presence or absence of carvacrol and tetrasodium pyrophosphate.


Sign in / Sign up

Export Citation Format

Share Document