Frequency and Antimicrobial Resistance of Salmonella Serotypes on Beef Carcasses at Small Abattoirs in Jalisco State, Mexico

2012 ◽  
Vol 75 (5) ◽  
pp. 867-873 ◽  
Author(s):  
JULIA A. PEREZ-MONTAÑO ◽  
DELIA GONZALEZ-AGUILAR ◽  
JEANNETTE BARBA ◽  
CARLOS PACHECO-GALLARDO ◽  
CARLOS A. CAMPOS-BRAVO ◽  
...  

The prevalence and antimicrobial resistance of Salmonella serotypes on beef carcasses from four small abattoirs in Jalisco State, Mexico, were investigated during a 10-month period. Following U.S. Department of Agriculture Food Safety and Inspection Service protocols, Salmonella was isolated from 78 (15.4%) beef carcasses (n = 505) after the final carcass water wash. Isolation frequency differed by establishment (P < 0.05) and was higher (P < 0.05) during the wet season (May through September) for all establishments. Thirteen Salmonella serotypes and four serogroups (partially serotyped isolates) were identified. The most prevalent were Salmonella enterica Give (24.4%), Salmonella Typhimurium (17.9%), and Salmonella Group B (14.1%). Antimicrobial susceptibility was tested against 11 drugs, and results indicated that 46.2% of the isolates were resistant to tetracycline, 42.3% were resistant to streptomycin, 23.1% were resistant to chloramphenicol, 21.8% were resistant to trimethoprim-sulfamethoxazole, and 19.2% were resistant to gentamicin. No resistance to ceftriaxone or ciprofloxacin was observed, and 33% of the isolates were resistant to three or more antimicrobials. Although Salmonella Give was the most prevalent serotype, 95% of the isolates of this serotype were susceptible to all antimicrobials tested. Antimicrobial resistance was more common in Salmonella Typhimurium, and 93% (13 of 14) of the isolates of this serotype were resistant to at least five antimicrobials. The frequency of multidrug-resistant Salmonella isolates differed among establishments (P < 0.05) and may be related to the origin of the cattle presented for harvesting. These findings highlight the need for control measures to reduce Salmonella prevalence on beef carcasses in small abattoirs in Mexico and for strategies to ensure the cautious use of antimicrobials in animal production to prevent and control the spread of antimicrobial-resistant foodborne pathogens.

2013 ◽  
Vol 76 (12) ◽  
pp. 2004-2010 ◽  
Author(s):  
ELISA CABRERA-DIAZ ◽  
CLAUDIA M. BARBOSA-CARDENAS ◽  
JULIA A. PEREZ-MONTAÑO ◽  
DELIA GONZALEZ-AGUILAR ◽  
CARLOS PACHECO-GALLARDO ◽  
...  

The occurrence, serotype diversity, and antimicrobial resistance of Salmonella bacteria in commercial ground beef at retail establishments were investigated. Salmonella was isolated from 135 (56.7%) of 238 ground beef samples collected at the same number of butcher's shops located in three municipalities of Jalisco State, Mexico, during an 11-month period. The isolation frequency differed by municipality (P < 0.05) and was higher (P < 0.05) during the warm season (68.5%) than during the cold season (43.2%). Overall, 25 serotypes and 8 serogroups were identified among 135 Salmonella isolates; predominant were Salmonella group B (9.6%), Salmonella Anatum (8.9%), Salmonella Agona (6.7%), Salmonella Infantis (6.7%), and Salmonella Typhimurium (5.9%). All Salmonella isolates were tested for susceptibility to 11 antimicrobial drugs of human and veterinary use. Resistance to tetracycline was the most commonly observed (40.7%), followed by resistance to streptomycin (35.6%), trimethoprim-sulfamethoxazole (20.7%), and nalidixic acid (19.3%). Thirty-seven Salmonella isolates (27.4%) were multidrug resistant, and the majority corresponded to Salmonella Group B, Salmonella Anatum, and Salmonella Typhimurium. Three Salmonella isolates were resistant to seven different antimicrobials. The frequency of Salmonella in ground beef samples (56.7%) was higher than that observed in our previous investigation on beef carcasses (15.4%) at small abattoirs in the same region of Mexico. This may be a result of increasing contamination at these two points of the raw-beef production chain or may be an effect of the grinding process that facilitates a more-homogeneous pathogen distribution in the product. Poor hygiene, temperature abuse, and practices allowing cross-contamination during ground beef fabrication at these retail establishments increase the consumer's exposure to Salmonella.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 660
Author(s):  
Xuebin Xu ◽  
Silpak Biswas ◽  
Guimin Gu ◽  
Mohammed Elbediwi ◽  
Yan Li ◽  
...  

Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.


2007 ◽  
Vol 70 (6) ◽  
pp. 1502-1506 ◽  
Author(s):  
RAFAEL JESÚS ASTORGA MÁRQUEZ ◽  
AURORA ECHEITA SALABERRIA ◽  
ALFONSO MALDONADO GARCÍA ◽  
SILVIA VALDEZATE JIMENEZ ◽  
ALFONSO CARBONERO MARTINEZ ◽  
...  

The prevalence of and the antibiotic resistance shown by Salmonella isolated from pigs in Andalusia (southern Spain) is reported. Salmonella enterica was recovered from 40 (33%) of 121 sampled herds, and a total of 65 isolates were serotyped. The most common Salmonella serotypes were Typhimurium and Rissen (30.7% each); others included Derby (9.2%), Brandenburg (9.2%), Newport (7.7%), Bredeney (4.6%), Anatum (3.0%), Hadar (1.5%), and Goldcoast (1.5%). One strain (1.5%) belonging to the monophasic variant of the Typhimurium serotype (Salmonella 4,5,12:i:−) was also detected. Definitive phage type (DT) 104b was the most common Typhimurium phage type isolated. These Salmonella strains were resistant to various antimicrobial agents, including tetracycline (84.6%), streptomycin (69.2%), neomycin (63.0%), sulfonamides (61.5%), ampicillin (53.8%), and amoxicillin (53.8%). All isolates were fully susceptible to ceftriaxone, ciprofloxacin, and colistin. Thirty-nine strains (64%) resistant to four or more antimicrobial agents were defined as multidrug resistant. Multidrug resistance profiles were observed in Salmonella serotypes Typhimurium, Rissen, Brandenburg, Bredeney, a monophasic variant, Gold-coast, Hadar, and Anatum, with serotypes Typhimurium and Brandenburg showing the most complicated resistance patterns (resistant to ≥11 drugs).


2021 ◽  
pp. 158-164
Author(s):  
Ferdausi Ali ◽  
Tazriyan Noor Silvy ◽  
Tanim Jabid Hossain ◽  
Md. Kamal Uddin ◽  
Mohammad Seraj Uddin

Background and Aim: Dissemination of multidrug-resistant (MDR) Salmonella through food chains has serious health implications, with higher rates of morbidity and mortality. Broiler meat remains a major reservoir of Salmonella contamination. The lack of proper hygiene in local broiler operations has, therefore, prompted this research into the assessment of Salmonella contamination in local shops and associated antimicrobial resistance (AMR) phenotypes. Materials and Methods: A total of 55 broiler samples including skin, meat, and swab samples from chopping and dressing sites were included in the study. The samples were collected from broiler shops in Hathazari, Bangladesh, and screened for the presence of Salmonella strains using culture-based methods. The isolates were biochemically characterized and further tested for AMR to eight common antibiotics using the disk diffusion technique. Results: Salmonella contaminations were identified in 29% (16/55) of the broiler samples. Swab samples collected from the chopping sites appeared to be contaminated in higher proportions (33%) than those collected from the dressing areas (25%). On the other hand, the skin samples (50%) were detected with a higher percentage of contamination than the meat samples (25%). All Salmonella isolates showed resistance toward at least one of the eight antibiotics used. Although none of the isolates was resistant to all antibiotics, 18.75% showed resistance to a maximum of seven antibiotics. Resistance to nalidixic acid was most prevalent (87.5%), followed by sulfamethoxazole-trimethoprim (81.25%), erythromycin (81.25%), tetracycline (75%), streptomycin (56.25%), ampicillin-clavulanic acid (50%), chloramphenicol (43.75%), and cefotaxime (18.75%). The resistance patterns of the isolates were found to be highly diverse. The most frequently observed pattern was the following: Ampicillin-clavulanic acid-sulfamethoxazole-trimethoprim-nalidixic acid-tetracycline-chloramphenicol-streptomycin-erythromycin. Conclusion: The relatively high prevalence of MDR strains in the samples underlies an urgent need for surveillance and control measures concerning hygiene and antibiotic use in local broiler operations.


2016 ◽  
Vol 79 (11) ◽  
pp. 1884-1890 ◽  
Author(s):  
SANG-IK OH ◽  
JONG WAN KIM ◽  
MYEONGJU CHAE ◽  
JI-A JUNG ◽  
BYUNGJAE SO ◽  
...  

ABSTRACT This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:− (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes blaTEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S291-S292
Author(s):  
Nkuchia M M’ikanatha ◽  
Kelly E Kline ◽  
Sameh W Boktor ◽  
Xin Yin ◽  
Lisa Dettinger ◽  
...  

Abstract Background Antimicrobial resistance (AMR) in foodborne pathogens of animal origin, including nontyphoidal Salmonella (NTS), is a public health concern. Pennsylvania conducts integrated surveillance for AMR in NTS from human and animal sources in collaboration with the FDA and CDC National Antimicrobial Resistant Monitoring System (NARMS). Methods We reviewed pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility (SST) and whole-genome sequencing (WGS) data for isolates from animal and food sources, including 96 NTS from 2,520 meat samples (poultry, ground beef and pork chops) purchased during 2015–2017 from randomly selected retail outlets in Pennsylvania. SST to 15 antimicrobial agents was done on 109 NTS clinical isolates that had similar PFGE patterns to meat isolates. SST and WGS were used to characterize all isolates from meat and two clinical isolates from 2017. Results 28 (29.2%) and 17 (17.7%) NTS isolated from meat sources were resistant to ≥3 and ≥5 antibiotics classes, respectively. Resistance to ceftriaxone rose from 12% (3/25) in 2015 to 27% (10/37) in 2016 and resistance to amoxicillin/clavulanate also increased. Plasmid-mediated bla CMY-2 β-lactam resistance genes that hydrolyze extended-spectrum cephalosporins (ESC) increased from 12% in 2015 (3/25) to 18.9% (7/37) in 2016. Four blaCTX-M-65 genes that confer resistance to extended-spectrum β-lactamases (ESBLs) were identified in 2016 (n = 3) and 2017. Of the 109 clinical isolates, 25.7% demonstrated resistance to ≥3 and 11% to ≥5 antibiotics classes, respectively. No clinical isolates were resistant to ceftriaxone in 2015, 12.5% (6/48) and 24.3% (9/37) were resistant in 2016 and 2017, respectively. Resistance to amoxicillin/clavulanate was demonstrated in 8.3% (4/48) of isolates in 2016 (figure). Two clinical isolates carried blaCTX-M-65 ESB Ls genes and were resistant to eight antimicrobial agents (ACSSuTCxNalCot. Phenotype). Conclusion NTS (≥25%) from animal and human sources were multidrug-resistant and harbored CMY-2 and CTX-M-65 genes. Dissemination of genes that confer resistance to ESBLs and ESCs in NTS undermines recommended treatment for severe infections and underscores the need for One-Health surveillance and antimicrobial stewardship efforts. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 83 (7) ◽  
pp. 1137-1148 ◽  
Author(s):  
HAEJIN HWANG ◽  
RANDALL S. SINGER

ABSTRACT Campylobacter is one of the most commonly reported foodborne pathogens in the United States. Because poultry is considered a major source of Campylobacter infections in humans, reduction of Campylobacter contamination in poultry products is likely the most important and effective public health strategy for reducing the burden of campylobacteriosis in humans. A comprehensive on-line survey was conducted of key stakeholders in the U.S. broiler industry, including broiler farm managers (n = 18), poultry veterinarians (n = 18), and processing plant managers (n = 20), to assess the current pre- and postharvest Campylobacter interventions and control measures practiced by the industry for reducing Campylobacter contamination of broiler products. The survey also included information regarding each respondent's understanding of Campylobacter transmission and ecology in relation to broiler production. The results revealed that a majority of the establishments included in the survey are following the U.S. Department of Agriculture, Food Safety and Inspection Service guidelines for controlling Campylobacter contamination in broiler flocks and on carcasses. However, establishments appeared to be putting more effort into Salmonella control than into Campylobacter control both on the farm and in the processing plant. A majority of the respondents responded that current interventions are not effective for reducing Campylobacter contamination, especially on the farm. Many respondents did not understand the risk factors associated with Campylobacter colonization in broiler flocks and on carcasses. Continued educational and training programs for key stakeholders in the U.S. broiler industry are needed to increase awareness of the issues associated with Campylobacter infection in broiler chickens and of the fact that Campylobacter infection is a multifaceted problem that requires efforts from both the pre- and postharvest sectors. HIGHLIGHTS


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 598
Author(s):  
Elaine Meade ◽  
Mark Anthony Slattery ◽  
Mary Garvey

Antimicrobial resistance is one of the greatest dangers to public health of the 21st century, threatening the treatment and prevention of infectious diseases globally. Disinfection, the elimination of microbial species via the application of biocidal chemicals, is essential to control infectious diseases and safeguard animal and human health. In an era of antimicrobial resistance and emerging disease, the effective application of biocidal control measures is vital to protect public health. The COVID-19 pandemic is an example of the increasing demand for effective biocidal solutions to reduce and eliminate disease transmission. However, there is increasing recognition into the relationship between biocide use and the proliferation of Antimicrobial Resistance species, particularly multidrug-resistant pathogens. The One Health approach and WHO action plan to combat AMR require active surveillance and monitoring of AMR species; however, biocidal resistance is often overlooked. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens and numerous fungal species have demonstrated drug and biocidal resistance where increased patient mortality is a risk. Currently, there is a lack of information on the impact of biocide application on environmental habitats and ecosystems. Undoubtedly, the excessive application of disinfectants and AMR will merge to result in secondary disasters relating to soil infertility, loss of biodiversity and destruction of ecosystems.


2016 ◽  
Vol 79 (2) ◽  
pp. 194-204 ◽  
Author(s):  
YI-CHENG HSIEH ◽  
TONI L. POOLE ◽  
MICK RUNYON ◽  
MICHAEL HUME ◽  
TIMOTHY J. HERRMAN

ABSTRACT The objective of this study was to characterize 365 nontyphoidal Salmonella enterica isolates from animal feed. Among the 365 isolates, 78 serovars were identified. Twenty-four isolates (7.0%) were recovered from three of six medicated feed types. Three of these isolates derived from the medicated feed, Salmonella Newport, Salmonella Typhimurium var. O 5−(Copenhagen), and Salmonella Lexington var. 15+ (Manila), displayed antimicrobial resistance. Susceptibility testing revealed that only 3.0% (12) of the 365 isolates displayed resistance to any of the antimicrobial agents. These 12 isolates were recovered from unmedicated dry beef feed (n = 3), medicated dry beef feed (n = 3), cabbage culls (n = 2), animal protein products (n = 2), dry dairy cattle feed (n =1), and fish meal (n =1). Only Salmonella Newport and Salmonella Typhimurium var. O 5−(Copenhagen) were multidrug resistant. Both isolates possessed the IncA/C replicon and the blaCMY-2 gene associated with cephalosporin resistance. Plasmid replicons were amplified from 4 of 12 resistant isolates. Plasmids (40 kb) were Salmonella Montevideo and Salmonella Kentucky. Conjugation experiments were done using 7 of the 12 resistant isolates as donors. Only Salmonella Montevideo, possessing a plasmid and amplifying IncN, produced transconjugants. Transconjugants displayed the same antimicrobial resistance profile as did the donor isolate. Three isolates that amplified replicons corresponding to IncA/C or IncHI2 did not produce transconjugants at 30 or 37°C. The results of this study suggest that the prevalence of antimicrobial-resistant Salmonella contaminating animal feed is low in Texas. However, Salmonella was more prevalent in feed by-products; fish meal had the highest prevalence (84%) followed by animal protein products (48%). Ten of the 35 feed types had no Salmonella contamination. Further investigation is needed to understand the possible role of specific feed types in the dissemination of antimicrobial resistant bacteria.


Author(s):  
L. Vaillant ◽  
◽  
G. Birgand ◽  
M. Esposito-Farese ◽  
P. Astagneau ◽  
...  

Abstract Background Much effort has been made over the last two decades to educate and train healthcare professionals working on antimicrobial resistance in French hospitals. However, little has been done in France to assess perceptions, attitudes and knowledge regarding multidrug resistant organisms (MDROs) and, more globally, these have never been evaluated in a large-scale population of medical and non-medical healthcare workers (HCWs). Our aim was to explore awareness among HCWs by evaluating their knowledge of MDROs and the associated control measures, by comparing perceptions between professional categories and by studying the impact of training and health beliefs. Methods A multicentre cross-sectional study was conducted in 58 randomly selected French healthcare facilities with questionnaires including professional and demographic characteristics, and knowledge and perception of MDRO transmission and control. A knowledge score was calculated and used in a logistic regression analysis to identify factors associated with higher knowledge of MDROs, and the association between knowledge and perception. Results Between June 2014 and March 2016, 8716/11,753 (participation rate, 74%) questionnaires were completed. The mean knowledge score was 4.7/8 (SD: 1.3) and 3.6/8 (SD: 1.4) in medical and non-medical HCWs, respectively. Five variables were positively associated with higher knowledge: working in a university hospital (adjusted odds ratio, 1.41, 95% CI 1.16–1.70); age classes 26–35 years (1.43, 1.23–1.6) and 36–45 years (1.19, 1.01–1.40); medical professional status (3.7, 3.09–4.44), working in an intensive care unit (1.28, 1.06–1.55), and having been trained on control of antimicrobial resistance (1.31, 1.16–1.48). After adjustment for these variables, greater knowledge was significantly associated with four cognitive factors: perceived susceptibility, attitude toward hand hygiene, self-efficacy, and motivation. Conclusions We found a low level of MDRO awareness and knowledge of associated control measures among French HCWs. Training on hand hygiene and measures to control MDRO spread may be helpful in shaping beliefs and perceptions on MDRO control among other possible associated factors. Messages should be tailored to professional status and their perception. Other approaches should be designed, with more effective methods of training and cognitive interventions. Trial registration Clinical Trials.gov NCT02265471. Registered 16 October 2014 - Retrospectively registered.


Sign in / Sign up

Export Citation Format

Share Document