Climate change impacts on human systems

2013 ◽  
pp. 53-67
2021 ◽  
Author(s):  
Christian Huggel ◽  
Simon K. Allen ◽  
Indra D. Bhatt ◽  
Rithodi Chakraborty ◽  
Fabian Drenkhan ◽  
...  

<p>Mountains cover about a quarter of the Earth’s land surface and are home to or serve a substantial fraction of the global population with essential ecosystem services, in particular water, food, energy, and recreation. While mountain systems are expected to be highly exposed to climate change, we currently lack a comprehensive global picture of the extent to which environmental and human systems in mountain regions have been affected by recent anthropogenic climate change.</p><p>Here we undertake an unprecedented effort to detect observed impacts of climate change in mountains regions across all continents. We follow the approach implemented in the IPCC 5<sup>th</sup> Assessment Report (AR5) and follow-up research where we consider whether a natural or human system has changed beyond its baseline behavior in the absence of climate change, and then attribute the observed change to different drivers, including anthropogenic climate change. We apply an extensive review of peer-reviewed and grey literature and identify more than 300 samples of impacts (aggregate and case studies). We show that a wide range of natural and human systems in mountains have been affected by climate change, including the cryosphere, the water cycle and water resources, terrestrial and aquatic ecosystems, energy production, infrastructure, agriculture, health, migration, tourism, community and cultural values and disasters. Our assessment documents that climate change impacts are observed in mountain regions on all continents. However, the explicit distinction of different drivers contributing to or determining an observed change is often highly challenging; particularly due to widespread data scarcity in mountain regions. In that context, we were also able to document a high amount of impacts in previously under-reported continents such as Africa and South America. In particular, we have been able to include a substantial number of place-based insights from local/indigenous communities representing important alternative worldviews.</p><p>The role of human influence in observed climate changes is evaluated using data from multiple gridded observational climate products and global climate models. We find that anthropogenic climate change has a clear and discernable fingerprint in changing natural and human mountain systems across the globe. In the cryosphere, ecosystems, water resources and tourism the contribution of anthropogenic climate change to observed changes is significant, showing the sensitivity of these systems to current and future climate change. Furthermore, our analysis reveals the need to consider the plurality of knowledge systems through which climate change impacts are being understood in mountain regions. Such attempts at inclusivity, which addresses issues of representation and justice, should be deemed necessary in exploring climate change impacts.</p>


2019 ◽  
Vol 8 (7) ◽  
pp. 198
Author(s):  
Nicole Bates-Eamer

Climate change impacts natural and human systems, including migration patterns. But isolating climate change as the driver of migration oversimplifies a complex and multicausal phenomenon. This article brings together the literature on global migration and displacement, environmental migration, vulnerability and precarity, and borders and migration governance to examine the ways in which climate-induced migrants experience precarity in transit. Specifically, it assesses the literature on the ways in which states create or amplify precarity in multiple ways: through the use of categories, by externalizing borders, and through investments in border infrastructures. Overall, the paper suggests that given the shift from governance regimes purportedly based on protection and facilitation to regimes based on security, deterrence, and enforcement, borders are complicit in producing and amplifying the vulnerability of migrants. The phenomenon of climate migration is particularly explicative in demonstrating how these regimes, which categorize individuals based on why they move, are and will continue to be unable to manage future migration flows.


2021 ◽  
Author(s):  
Ana Ochoa-Sánchez ◽  
Fabian Drenkhan ◽  
Dáithí Stone ◽  
Daniel Mendoza ◽  
Ronald Gualán ◽  
...  

<p>Physical, biological, and human systems in mountain regions are highly sensitive to climate change due to strong feedbacks and low resilience. Detection of changes and attribution of them to climate and non-climate drivers provides ongoing monitoring of complex interactions of coupled natural and human systems and improving scientific assessments that inform mitigation and adaptation practices. In the IPCC 5<sup>th</sup> Assessment Report published in 2014, Central and South America was the region with the least evidence available for detection and attribution (D&A) of climate change impacts. Since then, much more evidence has accumulated due to an increasing number of studies detecting impacts in the Andean region. In this study, we therefore performed a systematic literature review of climate change impacts and made a local D&A expert impact assessment for a total of 12 natural and human systems in the Andes. We found the following confidence levels of detection and attribution of each impact for each system: medium and high, respectively, for energy; high and high, for snow and ice, tourism, and cultural values; high and medium for terrestrial and aquatic ecosystems, disasters, human health and migration; and medium and medium for agriculture and water systems. A total number of 65 sample impacts (in aggregate or case study form) could be attributed to climate change. Climate change was especially important in glacio-hydrological systems (49%) and terrestrial ecosystems (15%). Among the impacts that could be attributed to climate change with high confidence, snow and ice system dominated. About half of the total impact samples were attributed with medium confidence, of which 35% corresponded to water systems and 16% to agriculture. Finally, 14% of all impacts were assessed with low attribution confidence. Important results include: (1) glacier retreat leads to important cascading effects affecting most of the systems in the Andes; these impacts were primarily attributed to temperature increase caused by anthropogenic climate change; (2) numerous terrestrial and aquatic Andean ecosystems have been affected by climate change (e.g. upward plant colonization, changes in the abundance and distribution of species), and most of these impacts could be attributed to anthropogenic climate change; and (3) community changes and loss of cultural values are among the strongest impacts of human systems that were attributed to climate change; a broad set of studies detected that Andean communities perceived changes in their highly preserved long-standing cultural and spiritual rituals and cosmovision. These findings are key to understand current climate change impacts in the Andean region, and to advance our understanding of complex interactions of coupled natural and human systems in order to put particular attention on integrated scientific assessments and leverage local decision-making and management practices.</p>


2019 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

Sign in / Sign up

Export Citation Format

Share Document