scholarly journals Physiological and root morphological responses in different combinations of rootstock-scion of cacao to water deficit

2021 ◽  
Vol 38 (3) ◽  
pp. 631-651
Author(s):  
Ramón Jaimez ◽  
Gregorio Vásconez ◽  
Ignacio Sotomayor ◽  
Grisnel Quijano ◽  
Jaime Morante ◽  
...  

Grafting is a common practice in cacao cultivation, but it has not been reported whether rootstock-scion combinations respond differently in terms of water transport, growth, or nutrient uptake under varying soil water availability conditions. The effects of water deficits on water potential (Ψf), basal diameter (db), root growth, chlorophyll and leaf concentrations of nitrogen (N) were evaluated in 16 rootstock-scion combinations that resulted from four rootstocks and four scion clones. Grafted seedlings were subjected to two water regimes: 21 days without irrigation (WD) and continuous irrigation (I). Under WD conditions, Ψf tended to be lower when using the EETP800 clone with the four rootstocks, indicating that this clone may have a higher rate of transpiration. The greater Ψf (p <0.05) obtained with the EET400 and EET399 rootstocks-scion combinations indicate higher water uptake capacity by the root systems of these rootstocks, which permits the maintenance of adequate transpiration rates and higher Ψf. The higher db, chlorophyll content and leaf N content obtained in the combinations of scions with the EET400 rootstock under WD impart on this rootstock a more favorable degree of adaptability for tolerating water deficits. However, this tolerance is not associated with increased root growth, which indicates that higher efficiency of water uptake is related to metabolic and physiological processes rather than a larger root surface.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 772
Author(s):  
Estefanía Álvarez-Castillo ◽  
Carlos Bengoechea ◽  
Antonio Guerrero

The replacement of common acrylic derivatives by biodegradable materials in the formulation of superabsorbent materials would lessen the associated environmental impact. Moreover, the use of by-products or biowastes from the food industry that are usually discarded would promote a desired circular economy. The present study deals with the development of superabsorbent materials based on a by-product from the meat industry, namely plasma protein, focusing on the effects of a freeze-drying stage before blending with glycerol and eventual injection molding. More specifically, this freeze-drying stage is carried out either directly on the protein flour or after its solubilization in deionized water (10% w/w). Superabsorbent materials obtained after this solubilization-freeze-drying process display higher Young’s modulus and tensile strength values, without affecting their water uptake capacity. As greater water uptake is commonly related to poorer mechanical properties, the proposed solubilization-freeze-drying process is a useful strategy for producing strengthened hydrophilic materials.


2016 ◽  
Vol 7 (14) ◽  
pp. 2553-2564 ◽  
Author(s):  
Yating Jia ◽  
Weizhong Wang ◽  
Xiaojun Zhou ◽  
Wei Nie ◽  
Liang Chen ◽  
...  

A poly(glycerol sebacate)-based elastomeric copolyesters with improved mechanical properties and higher water uptake capacity.


2017 ◽  
Vol 19 (38) ◽  
pp. 26132-26144 ◽  
Author(s):  
Akhil Pratap Singh ◽  
Kaushik Kundu ◽  
Vikram Singh ◽  
Ramesh L. Gardas ◽  
Sanjib Senapati

In view of this limited research on pILs in microemulsions, here we study the formation and characterization of a series of pIL–water/oil microemulsions with specific questions on the effect of pILs on water uptake capacity and thermal stability of W/O microemulsions.


Clay Minerals ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 411-420 ◽  
Author(s):  
S. Kaufhold ◽  
R. Dohrmann ◽  
K. Ufer ◽  
R. Kleeberg ◽  
H. Stanjek

AbstractThe Cu-triethylenetetramine-complex (Cutrien) is one of the commonly used index cations for CEC determination in clay science. Cutrien-exchanged smectites show basal spacings between 13.0 and 13.5 Å after correction for the Lorentz and polarization factors. The full width at half maximum (FWHM) of the d001 reflection is today related to the percentage of tetrahedral charge (beidellitic character) and/or to the Fe content of the smectites. The structural Fe content and the tetrahedral charge correlate, so their individual influence on d001 cannot be resolved. Nevertheless, the FWHM of Cutrien smectites should depend on the charge distribution rather than the Fe content.X-ray diffraction (XRD) and water uptake capacity measurements showed that the interlayer of Cutrien-exchanged smectites does not swell any more, but can take up a few water molecules. Accordingly, the water uptake capacity of the external surface area can be determined independently from the interlayer water uptake capacity. Adjusting the pH of Cutrien-bentonite dispersion to different values allows for the determination of the variable charge.In conclusion, Cutrien exchange of smectites appears to be suitable for the study of external surfaces area related phenomena (e.g. edge adsorption processes) without any influence of the interlayer region.


2015 ◽  
Vol 44 (5) ◽  
pp. 2047-2051 ◽  
Author(s):  
Nakeun Ko ◽  
Jisu Hong ◽  
Siyoung Sung ◽  
Kyle E. Cordova ◽  
Hye Jeong Park ◽  
...  

The functionalization of the metal–organic framework, UiO-67, with –NH2 groups is proven effective for increasing the water uptake capacity at low relative pressure at 298 K.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11658
Author(s):  
Benchuan Zheng ◽  
Xiaona Zhang ◽  
Ping Chen ◽  
Qing Du ◽  
Ying Zhou ◽  
...  

Maize’s nitrogen (N) uptake can be improved through maize-legume intercropping. N uptake mechanisms require further study to better understand how legumes affect root growth and to determine maize’s absorptive capacity in maize-legume intercropping. We conducted a two-year field experiment with two N treatments (zero N (N0) and conventional N (N1)) and three planting patterns (monoculture maize (Zea mays L.) (MM), maize-soybean (Glycine max L. Merr.) strip intercropping (IMS), and maize-peanut (Arachis hypogaea L.) strip intercropping (IMP)). We sought to understand maize’s N uptake mechanisms by investigating root growth and distribution, root uptake capacity, antioxidant enzyme activity, and the antioxidant content in different maize-legume strip intercropping systems. Our results showed that on average, the N uptake of maize was significantly greater by 52.5% in IMS and by 62.4% in IMP than that in MM. The average agronomic efficiency (AE) of maize was increased by 110.5 % in IMS and by 163.4 % in IMP, compared to MM. The apparent recovery efficiency (RE) of maize was increased by 22.3% in IMS. The roots of intercropped maize were extended into soybean and peanut stands underneath the space and even between the inter-rows of legume, resulting in significantly increased root surface area density (RSAD) and total root biomass. The root-bleeding sap intensity of maize was significantly increased by 22.7–49.3% in IMS and 37.9–66.7% in IMP, compared with the MM. The nitrate-N content of maize bleeding sap was significantly greater in IMS and IMP than in MM during the 2018 crop season. The glutathione (GSH) content, superoxide dismutase (SOD), and catalase (CAT) activities in the root significantly increased in IMS and IMP compared to MM. Strip intercropping using legumes increases maize’s aboveground N uptake by promoting root growth and spatial distribution, delaying root senescence, and strengthening root uptake capacity.


2014 ◽  
Vol 38 (5) ◽  
pp. 1846-1852 ◽  
Author(s):  
Felix Jeremias ◽  
Dominik Fröhlich ◽  
Christoph Janiak ◽  
Stefan K. Henninger

MOFs with high water uptake capacity and hydrothermal stability are gaining attention for low temperature heat transformation applications such as thermally driven adsorption chillers or adsorption heat pumps.


Sign in / Sign up

Export Citation Format

Share Document