scholarly journals EARLIER DETECTION OF ALZHEIMER’S DISEASE USING IMAGE PROCESSING AND MACHINE LEARNING ALGORITHMS WITH GRAPH THEORY

Author(s):  
D.J. Samatha Naidu ◽  
G. Anand Kumar Reddy

Alzheimer’s disease is one of the brain disease which is irreversible, progressive brain disorder that slowly destroys memory and thinking skills and, eventually, the ability to carry out the simplest tasks. There is no cure for Alzheimer’s disease but we prevent it’s by early detection. In existing work, limited with Alzheimer’s are irreversible, effect on daily activities, high memory loss and reducing the size of brain, etc. previous works focused on 2D and 3D formats now we considering 4D images. In proposed work, this work aims to present an automated method that assists in the diagnosis of Alzheimer’s disease supports the monitoring of the progression of the disease. The study of brain network based on resting-state functional Magnetic Resonance Imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize various aspects of the brain network by calculating measures the accuracy of different machine learning methods and different features to classify Cognitively Normal (C.N) individuals from Alzheimer’s Disease (A.D) and to predict longitudinal outcomes in participants with Mild Cognitive Impairment (MCI).

Author(s):  
A. Thushara ◽  
C. Ushadevi Amma ◽  
Ansamma John

Alzheimer’s Disease (AD) is basically a progressive neurodegenerative disorder associated with abnormal brain networks that affect millions of elderly people and degrades their quality of life. The abnormalities in brain networks are due to the disruption of White Matter (WM) fiber tracts that connect the brain regions. Diffusion-Weighted Imaging (DWI) captures the brain’s WM integrity. Here, the correlation betwixt the WM degeneration and also AD is investigated by utilizing graph theory as well as Machine Learning (ML) algorithms. By using the DW image obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the brain graph of each subject is constructed. The features extracted from the brain graph form the basis to differentiate between Mild Cognitive Impairment (MCI), Control Normal (CN) and AD subjects. Performance evaluation is done using binary and multiclass classification algorithms and obtained an accuracy that outperforms the current top-notch DWI-based studies.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 300 ◽  
Author(s):  
Shuaizong Si ◽  
Bin Wang ◽  
Xiao Liu ◽  
Chong Yu ◽  
Chao Ding ◽  
...  

Alzheimer’s disease (AD) is a progressive disease that causes problems of cognitive and memory functions decline. Patients with AD usually lose their ability to manage their daily life. Exploring the progression of the brain from normal controls (NC) to AD is an essential part of human research. Although connection changes have been found in the progression, the connection mechanism that drives these changes remains incompletely understood. The purpose of this study is to explore the connection changes in brain networks in the process from NC to AD, and uncovers the underlying connection mechanism that shapes the topologies of AD brain networks. In particular, we propose a mutual information brain network model (MINM) from the perspective of graph theory to achieve our aim. MINM concerns the question of estimating the connection probability between two cortical regions with the consideration of both the mutual information of their observed network topologies and their Euclidean distance in anatomical space. In addition, MINM considers establishing and deleting connections, simultaneously, during the networks modeling from the stage of NC to AD. Experiments show that MINM is sufficient to capture an impressive range of topological properties of real brain networks such as characteristic path length, network efficiency, and transitivity, and it also provides an excellent fit to the real brain networks in degree distribution compared to experiential models. Thus, we anticipate that MINM may explain the connection mechanism for the formation of the brain network organization in AD patients.


Author(s):  
Bhuvaneshwari Bhaskaran ◽  
Kavitha Anandan

Alzheimer's disease (AD) is a progressive brain disorder which has a long preclinical phase. The beta-amyloid plaques and tangles in the brain are considered as the main pathological causes. Functional connectivity is typically examined in capturing brain network dynamics in AD. A definitive underconnectivity is observed in patients through the progressive stages of AD. Graph theoretic modeling approaches have been effective in understanding the brain dynamics. In this article, the brain connectivity patterns and the functional topology through the progression of Alzheimer's disease are analysed using resting state fMRI. The altered network topology is analysed by graphed theoretical measures and explains cognitive deficits caused by the progression of this disease. Results show that the functional topology is disrupted in the default mode network regions as the disease progresses in patients. Further, it is observed that there is a lack of left lateralization involving default mode network regions as the severity in AD increases.


Author(s):  
Bhuvaneshwari Bhaskaran ◽  
Kavitha Anandan

Alzheimer's disease (AD) is a progressive brain disorder which has a long preclinical phase. The beta-amyloid plaques and tangles in the brain are considered as the main pathological causes. Functional connectivity is typically examined in capturing brain network dynamics in AD. A definitive underconnectivity is observed in patients through the progressive stages of AD. Graph theoretic modeling approaches have been effective in understanding the brain dynamics. In this article, the brain connectivity patterns and the functional topology through the progression of Alzheimer's disease are analysed using resting state fMRI. The altered network topology is analysed by graphed theoretical measures and explains cognitive deficits caused by the progression of this disease. Results show that the functional topology is disrupted in the default mode network regions as the disease progresses in patients. Further, it is observed that there is a lack of left lateralization involving default mode network regions as the severity in AD increases.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 410
Author(s):  
Salar Hafez Ghoran ◽  
Anake Kijjoa

Alzheimer’s disease (AD) is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the ability to perform simple tasks. As the aging population continues to increase exponentially, AD has become a big concern for society. Therefore, neuroprotective compounds are in the spotlight, as a means to tackle this problem. On the other hand, since it is believed—in many cultures—that marine organisms in an individual diet cannot only improve brain functioning, but also slow down its dysfunction, many researchers have focused on identifying neuroprotective compounds from marine resources. The fact that the marine environment is a rich source of structurally unique and biologically and pharmacologically active compounds, with unprecedented mechanisms of action, marine macroorganisms, such as tunicates, corals, sponges, algae, as well as microorganisms, such as marine-derived bacteria, actinomycetes, and fungi, have been the target sources of these compounds. Therefore, this literature review summarizes and categorizes various classes of marine-derived compounds that are able to inhibit key enzymes involved in AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase (BACE-1), and different kinases, together with the related pathways involved in the pathogenesis of AD. The compounds discussed herein are emerging as promising anti-AD activities for further in-depth in vitro and in vivo investigations, to gain more insight of their mechanisms of action and for the development of potential anti-AD drug leads.


Author(s):  
Adwait Patil

Abstract: Alzheimer’s disease is one of the neurodegenerative disorders. It initially starts with innocuous symptoms but gradually becomes severe. This disease is so dangerous because there is no treatment, the disease is detected but typically at a later stage. So it is important to detect Alzheimer at an early stage to counter the disease and for a probable recovery for the patient. There are various approaches currently used to detect symptoms of Alzheimer’s disease (AD) at an early stage. The fuzzy system approach is not widely used as it heavily depends on expert knowledge but is quite efficient in detecting AD as it provides a mathematical foundation for interpreting the human cognitive processes. Another more accurate and widely accepted approach is the machine learning detection of AD stages which uses machine learning algorithms like Support Vector Machines (SVMs) , Decision Tree , Random Forests to detect the stage depending on the data provided. The final approach is the Deep Learning approach using multi-modal data that combines image , genetic data and patient data using deep models and then uses the concatenated data to detect the AD stage more efficiently; this method is obscure as it requires huge volumes of data. This paper elaborates on all the three approaches and provides a comparative study about them and which method is more efficient for AD detection. Keywords: Alzheimer’s Disease (AD), Fuzzy System , Machine Learning , Deep Learning , Multimodal data


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S835-S835
Author(s):  
Charnae A Henry-Smith ◽  
Xianlin Han

Abstract Alzheimer’s disease is a progressive brain disease that slowly destroys memory and thinking skills. Alzheimer’s is characterized by an increase in Aβ plaques , and tau tangles. Neurons in the brain have axons covered in myelin sheath that connect microglia and astrocytes. The myelin sheath is composed of about 70% lipid composition; Sulfatide contributing to 30% overall. Sulfatide changes the morphology of primary microglia to their activated form. To study the role of microglia activation and sulfatide levels, three different mouse models were created: APP KI mice, CST Whole Body Ko mice, and cCST (conditional) KO. In order to create the genotype of the APP KI mice, a breeding mouse line was created. The APP KI gene had to be introduced in Plp1-Cre and cCST KO crossed mice to receive a working mouse model. During the duration of breeding for the APP KI mice, a preliminary experiment was performed on the CST KO mice. These mice were given the PLX3397 diet with the aim to remove the microglia and to see the effect of Aβ plaques. The PLX3397 will reduce the microglia targeting the CSF1R. After consuming the diet, the mice were harvested to collect tissues from the brain and spinal cord. Lipidomics and immunohistology were performed. In conclusion, we will continue the breeding of the CST flox/flox / Plp1-Cre / APP KI mice, and the drug dosage and treatment to be used in our APP KI mice will be based on preliminary data from our CST mice.


Author(s):  
Yegnanarayanan Venkatraman ◽  
◽  
Narayanaa Y Krithicaa ◽  
Valentina E. Balas ◽  
Marius M. Balas ◽  
...  

Notice that the synapsis of brain is a form of communication. As communication demands connectivity, it is not a surprise that "graph theory" is a fastest growing area of research in the life sciences. It attempts to explain the connections and communication between networks of neurons. Alzheimer’s disease (AD) progression in brain is due to a deposition and development of amyloid plaque and the loss of communication between nerve cells. Graph/network theory can provide incredible insights into the incorrect wiring leading to memory loss in a progressive manner. Network in AD is slanted towards investigating the intricate patterns of interconnections found in the pathogenesis of brain. Here, we see how the notions of graph/network theory can be prudently exploited to comprehend the Alzheimer’s disease. We begin with introducing concepts of graph/network theory as a model for specific genetic hubs of the brain regions and cellular signalling. We begin with a brief introduction of prevalence and causes of AD followed by outlining its genetic and signalling pathogenesis. We then present some of the network-applied outcome in assessing the disease-signalling interactions, signal transduction of protein-protein interaction, disturbed genetics and signalling pathways as compelling targets of pathogenesis of the disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Morshedul Bari Antor ◽  
A. H. M. Shafayet Jamil ◽  
Maliha Mamtaz ◽  
Mohammad Monirujjaman Khan ◽  
Sultan Aljahdali ◽  
...  

Alzheimer’s disease has been one of the major concerns recently. Around 45 million people are suffering from this disease. Alzheimer’s is a degenerative brain disease with an unspecified cause and pathogenesis which primarily affects older people. The main cause of Alzheimer’s disease is Dementia, which progressively damages the brain cells. People lost their thinking ability, reading ability, and many more from this disease. A machine learning system can reduce this problem by predicting the disease. The main aim is to recognize Dementia among various patients. This paper represents the result and analysis regarding detecting Dementia from various machine learning models. The Open Access Series of Imaging Studies (OASIS) dataset has been used for the development of the system. The dataset is small, but it has some significant values. The dataset has been analyzed and applied in several machine learning models. Support vector machine, logistic regression, decision tree, and random forest have been used for prediction. First, the system has been run without fine-tuning and then with fine-tuning. Comparing the results, it is found that the support vector machine provides the best results among the models. It has the best accuracy in detecting Dementia among numerous patients. The system is simple and can easily help people by detecting Dementia among them.


Sign in / Sign up

Export Citation Format

Share Document