DESIGN APPROACHES FOR LOW POWER- LOW AREA D FLIP FLOP S IN NANO TECHNOLOGY
This paper enumerates design of D flip flop with low power and low area for low power applications, for that analysis of various D-flip flops for low power dissipation ,area and delays is carried out at 0.12um to achieve low power, low-area the technology is scaled down to nanometer ranges, due to shrinking process, the leakage power tends to play a vital role in total power consumption at nano meter technology. In this paper, different D flip flop circuits are designed using Berkeley Short Channel Insulated Gate MOSFET (BSIM4) model equations., in this paper to reduce leakage power at 90nm 70nm and 50nm we implement leakage power reduction techniques six techniques are considered they are namely Sleep transistor, sleepy stack, Dual sleep ,Dual stack Forced Transistor sleep (FTS) and Sleepy keeper From the results, it is observed that SLEEP TRANSISTOR, and SLEEPY KEEPER.FORCED TRANSISTOR SLEEP techniques produces lower power dissipation than the other techniques , in this paper a qualitative comparison is done with the help of Dsch,, Micro wind Simulation tools, this paper concludes that a leakage reduction technique produce different power optimization levels for different architectures and employing a suitable technique for a particular architecture will be an effective way of reducing the leakage current and thereby static power.