scholarly journals Assessment of Soil Erosion by RUSLE Model using Remote Sensing and GIS of Indla-Ghatkhed, District-Amravati, Maharashtra

Author(s):  
N. W. Ingole ◽  
S. S. Vinchurkar

The catchment boundary of Indla Ghatkhed watershed covers an area about 14..62 sq km. The erosion is a natural geomorphic process occurring continually over the earth’s surface and it largely depends on topography, vegetation, soil and climatic variables and, therefore, exhibits pronounced spatial variability due to catchments heterogeneity and climatic variation. This problem can be circumvented by discrediting the catchments into approximately homogeneous sub-areas using Geographic Information System (GIS). Soil erosion assessment modeling was carried out based on the Revised Universal Soil Loss Equation (RUSLE). A set of factors are involved in RUSLE equation are A = Average annual soil loss (mt/ha/year), R = Rainfall erosivity factor (mt/ha/year), k = Soil erodibility factor, LS = Slope length factor, C = Crop cover management factor, P = Supporting conservation practice factor. These factors extracted from different surface features by analysis and brought in to raster format. The output depicts the amount of sediment rate from a particular grid in spatial domain and the pixel value of the outlet grid indicates the sediment yield at the outlet of the watershed.

Author(s):  
Hammad Gilani ◽  
Adeel Ahmad ◽  
Isma Younes ◽  
Sawaid Abbas

Abrupt changes in climatic factors, exploitation of natural resources, and land degradation contribute to soil erosion. This study provides the first comprehensive analysis of annual soil erosion dynamics in Pakistan for 2005 and 2015 using publically available climatic, topographic, soil type, and land cover geospatial datasets at 1 km spatial resolution. A well-accepted and widely applied Revised Universal Soil Loss Equation (RUSLE) was implemented for the annual soil erosion estimations and mapping by incorporating six factors; rainfall erosivity (R), soil erodibility (K), slope-length (L), slope-steepness (S), cover management (C) and conservation practice (P). We used a cross tabular or change matrix method to assess the annual soil erosion (ton/ha/year) changes (2005-2015) in terms of areas and spatial distriburtions in four soil erosion classes; i.e. Low (<1), Medium (1–5], High (5-20], and Very high (>20). Major findings of this paper indicated that, at the national scale, an estimated annual soil erosion of 1.79 ± 11.52 ton/ha/year (mean ± standard deviation) was observed in 2005, which increased to 2.47 ±18.14 ton/ha/year in 2015. Among seven administrative units of Pakistan, in Azad Jammu & Kashmir, the average soil erosion doubled from 14.44 ± 35.70 ton/ha/year in 2005 to 28.03 ± 68.24 ton/ha/year in 2015. Spatially explicit and temporal annual analysis of soil erosion provided in this study is essential for various purposes, including the soil conservation and management practices, environmental impact assessment studies, among others.


Author(s):  
S. Abdul Rahaman ◽  
S. Aruchamy ◽  
R. Jegankumar ◽  
S. Abdul Ajeez

Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS), coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE) to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h<sup>-1</sup>/ y<sup>-1</sup>. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS), and soil erosion hazard (A=RKLSCP) have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.


Author(s):  
Sangeetha Ramakrishnan ◽  
Ambujam Neelakanda Pillai Kanniperumal

The Nilgiri Biosphere, being one of the critical catchments, a small agricultural watershed of Udhagamandalam has been analysed to show the need to improve the agriculture by reducing the soil erosion. For this study, the land use and land cover classification was undertaken using Landsat images to highlight the changes that have occurred between 1981 and 2019. The Revised Universal Soil Loss Equation (RUSLE) method and the Geographic Information System (GIS) was used in this study to determine the soil erosion vulnerability of Sillahalla watershed in the Nilgiri Hills in Tamilnadu. This study will help to promote the economic development of the watershed with proper agricultural planning and erosion management. This study focuses on the estimation of the average annual soil loss and to classify the spatial distribution of the soil loss as a map with the RUSLE method and GIS. To estimate the average annual soil loss of the study area, GIS layers of the RUSLE factors like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C) and conservation practice (P) were computed in a raster data format. The total soil loss and average annual soil loss of the study area for 1981–1990,1991–2000, 2001–2010, 2011–2019 were found to be 0.2, 0.254, 0.3, 0.35 million t/year and 31.33, 37.78, 46.7, 51.89 t/ha/year, respectively. The soil erosion rate is classified into different classes as per the FAO guidelines and this severity classification map was prepared to identify the vulnerable areas.


2018 ◽  
Vol 22 (3) ◽  
pp. 1695-1712 ◽  
Author(s):  
Shuiqing Yin ◽  
Zhengyuan Zhu ◽  
Li Wang ◽  
Baoyuan Liu ◽  
Yun Xie ◽  
...  

Abstract. Soil erosion is one of the most significant environmental problems in China. From 2010 to 2012, the fourth national census for soil erosion sampled 32 364 PSUs (Primary Sampling Units, small watersheds) with the areas of 0.2–3 km2. Land use and soil erosion controlling factors including rainfall erosivity, soil erodibility, slope length, slope steepness, biological practice, engineering practice, and tillage practice for the PSUs were surveyed, and the soil loss rate for each land use in the PSUs was estimated using an empirical model, the Chinese Soil Loss Equation (CSLE). Though the information collected from the sample units can be aggregated to estimate soil erosion conditions on a large scale; the problem of estimating soil erosion condition on a regional scale has not been addressed well. The aim of this study is to introduce a new model-based regional soil erosion assessment method combining a sample survey and geostatistics. We compared seven spatial interpolation models based on the bivariate penalized spline over triangulation (BPST) method to generate a regional soil erosion assessment from the PSUs. Shaanxi Province (3116 PSUs) in China was selected for the comparison and assessment as it is one of the areas with the most serious erosion problem. Ten-fold cross-validation based on the PSU data showed the model assisted by the land use, rainfall erosivity factor (R), soil erodibility factor (K), slope steepness factor (S), and slope length factor (L) derived from a 1 : 10 000 topography map is the best one, with the model efficiency coefficient (ME) being 0.75 and the MSE being 55.8 % of that for the model assisted by the land use alone. Among four erosion factors as the covariates, the S factor contributed the most information, followed by K and L factors, and R factor made almost no contribution to the spatial estimation of soil loss. The LS factor derived from 30 or 90 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data worsened the estimation when used as the covariates for the interpolation of soil loss. Due to the unavailability of a 1 : 10 000 topography map for the entire area in this study, the model assisted by the land use, R, and K factors, with a resolution of 250 m, was used to generate the regional assessment of the soil erosion for Shaanxi Province. It demonstrated that 54.3 % of total land in Shaanxi Province had annual soil loss equal to or greater than 5 t ha−1 yr−1. High (20–40 t ha−1 yr−1), severe (40–80 t ha−1 yr−1), and extreme (> 80 t ha−1 yr−1) erosion occupied 14.0 % of the total land. The dry land and irrigated land, forest, shrubland, and grassland in Shaanxi Province had mean soil loss rates of 21.77, 3.51, 10.00, and 7.27 t ha−1 yr−1, respectively. Annual soil loss was about 207.3 Mt in Shaanxi Province, with 68.9 % of soil loss originating from the farmlands and grasslands in Yan'an and Yulin districts in the northern Loess Plateau region and Ankang and Hanzhong districts in the southern Qingba mountainous region. This methodology provides a more accurate regional soil erosion assessment and can help policymakers to take effective measures to mediate soil erosion risks.


2021 ◽  
Author(s):  
Habtamu Tamiru ◽  
Meseret Wagari

Abstract Background: The quantity of soil loss as a result of soil erosion is dramatically increasing in catchment where land resources management is very weak. The annual dramatic increment of the depletion of very important soil nutrients exposes the residents of this catchment to high expenses of money to use artificial fertilizers to increase the yield. This paper was conducted in Fincha Catchment where the soil is highly vulnerable to erosion, however, where such studies are not undertaken. This study uses Fincha catchment in Abay river basin as the study area to quantify the annual soil loss, where such studies are not undertaken, by implementing Revised Universal Soil Loss Equation (RUSLE) model developed in ArcGIS version 10.4. Results: Digital Elevation Model (12.5 x 12.5), LANDSAT 8 of Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Annual Rainfall of 10 stations (2010-2019) and soil maps of the catchment were used as input parameters to generate the significant factors. Rainfall erosivity factor (R), soil erodibility factor (K), cover and management factor (C), slope length and steepness factor (LS) and support practice factor (P) were used as soil loss quantification significant factors. It was found that the quantified average annual soil loss ranges from 0.0 to 76.5 t ha-1 yr-1 was obtained in the catchment. The area coverage of soil erosion severity with 55%, 35% and 10% as low to moderate, high and very high respectively were identified. Conclusion: Finally, it was concluded that having information about the spatial variability of soil loss severity map generated in the RUSLE model has a paramount role to alert land resources managers and all stakeholders in controlling the effects via the implementation of both structural and non-structural mitigations. The results of the RUSLE model can also be further considered along with the catchment for practical soil loss quantification that can help for protection practices.


2019 ◽  
Vol 11 (2) ◽  
pp. 529-539 ◽  
Author(s):  
Mahmud Mustefa ◽  
Fekadu Fufa ◽  
Wakjira Takala

Abstract Currently, soil erosion is the major environmental problem in the Blue Nile, Hangar watershed in particular. This study aimed to estimate the spatially distributed mean annual soil erosion and map the most vulnerable areas in Hangar watershed using the revised universal soil loss equation. In this model, rainfall erosivity (R-factor), soil erodibility (K-factor), slope steepness and slope length (LS-factor), vegetative cover (C-factor), and conservation practice (P-factor) were considered as the influencing factors. Maps of these factors were generated and integrated in ArcGIS and then the annual average soil erosion rate was determined. The result of the analysis showed that the amount of soil loss from the study area ranges from 1 to 500 tha−1 yr−1 with an average annual soil loss rate of 32 tha−1 yr−1. Considering contour ploughing with terracing as a fully developed watershed management, the resulting soil loss rate was reduced from 32 to 19.2 tha−1 yr−1. Hence, applying contour ploughing with terracing effectively reduces the vulnerability of the watershed by 40%. Based on the spatial vulnerability of the watershed, most critical soil erosion areas were situated in the steepest part of the watershed. The result of the study finding is helpful for stakeholders to take appropriate mitigation measures.


Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 137 ◽  
Author(s):  
Yves Hategekimana ◽  
Mona Allam ◽  
Qingyan Meng ◽  
Yueping Nie ◽  
Elhag Mohamed

Monitoring of improper soil erosion empowered by water is constantly adding more risk to the natural resource mitigation scenarios, especially in developing countries. The demographical pattern and the rate of growth, in addition to the impairments of the rainfall pattern, are consequently disposed to adverse environmental disturbances. The current research goal is to evaluate soil erosion triggered by water in the coastal area of Kenya on the district level, and also in protected areas. The Revised Universal Soil Loss Equation (RUSLE) model was exercised to estimate the soil loss in the designated study area. RUSLE input parameters were functionally realized in terms of rainfall and runoff erosivity factor (R), soil erodibility factor (K), slope length and gradient factor (LS), land cover management factor (C) and slope factor (P). The realization of RUSLE input parameters was carried out using different dataset sources, including meteorological data, soil/geology maps, the Digital Elevation Model (DEM) and processing of satellite imagery. Out of 26 districts in coastal area, eight districts were projected to have mean annual soil loss rates of >10 t·ha−1·y−1: Kololenli (19.709 t·ha−1·y−1), Kubo (14.36 t·ha−1·y−1), Matuga (19.32 t·ha−1·y−1), Changamwe (26.7 t·ha−1·y−1), Kisauni (16.23 t·ha−1·y−1), Likoni (27.9 t·ha−1·y−1), Mwatate (15.9 t·ha−1·y−1) and Wundanyi (26.51 t·ha−1·y−1). Out of 34 protected areas at the coastal areas, only four were projected to have high soil loss estimation rates >10 t·ha−1·y−1: Taita Hills (11.12 t·ha−1·y−1), Gonja (18.52 t·ha−1·y−1), Mailuganji (13.75.74 t·ha−1·y−1), and Shimba Hills (15.06 t·ha−1·y−1). In order to mitigate soil erosion in Kenya’s coastal areas, it is crucial to regulate the anthropogenic disturbances embedded mainly in deforestation of the timberlands, in addition to the natural deforestation process caused by the wildfires.


Author(s):  
Deepanshu Agarwal ◽  
Kunal Tongaria ◽  
Siddhartha Pathak ◽  
Anurag Ohri ◽  
Medha Jha

Soil erosion is one of the serious issues threatening the environment. It is a growing problem especially in areas of agricultural activity where soil erosion not only leads to de-creased agricultural productivity but also reduces water availability. This leads to drastic degradation of the agricultural lands. So there is a need to take up conservation and management measures which can be applied to check further soil erosion. Universal Soil Loss Equation (USLE) is the most popular empirically based model used globally for erosion prediction and control. Remote sensing and GIS techniques have become valuable tools for the digitization of the input data and genereation of maps. In the present study, RUSLE model has been adopted to estimate the soil erosion in the Khajuri watershed of Uttar Pradesh, India. This model involves calculation of parameters including runoff-rainfall erosivity factor (R), soil erodability Factor (K), topographic factor  (LS), cropping management factor (C), and support practice factor (P). Layer wise thematic maps of each of these factors were generated using GIS platform using various data sources and data preparation methods. The results of the study indicate that the annual average soil loss within the watershed is about  t/ha/yr (metric ton per hectare per year).


2018 ◽  
Vol 182 ◽  
pp. 10-24 ◽  
Author(s):  
Wei Qin ◽  
Qiankun Guo ◽  
Wenhong Cao ◽  
Zhe Yin ◽  
Qinghong Yan ◽  
...  

2020 ◽  
Vol 46 (2) ◽  
pp. 75-82
Author(s):  
Suraj Shaikh ◽  
Masilamani Palanisamy ◽  
Abdul Rahaman Sheik Mohideen

Soil erosion and soil loss is one of the common problems threatening the environment. This degrading phenomenon declines the soil fertility and significantly affects the agricultural activity. As a consequence, the productivity of soil is affected unquestionably. In this reason, there is a basic need to take up conservation and management measures which can be applied to check further soil erosion. Even though, soil erosion is a mass process spread cross the watershed, it is not economically viable to implement conservation techniques to the entire watershed. However, a method is a pre-requisite to identify the most vulnerable areas and quantify the soil erosion. In this study, Revised Universal Soil Loss Equation (RUSLE) has been accepted to estimate soil erosion in the Kummattipatti Nadi watershed part of the Coimbatore district of Tamil Nadu, India. This model has several parameters including runoff-rainfall erosivity factor (R), soil erodability Factor (K), topographic factor (LS), cropping management factor (C), and support practice factor (P). All these layers are prepared through geographical information system (GIS) by using various data sources and data preparation methods. The results of the study shows that the annual average soil loss within the watershed is about 6 t/ha/yr (metric ton per hectare per year). Higher soil erosion is observed in the land use classes of gullied wasteland, open scrub forest and degraded plantation. The soil erosion risk is extremely higher on the steep slopes and adjoining foothills. The proper conservation and management strategies has to be implement in this watershed for the development.


Sign in / Sign up

Export Citation Format

Share Document