Large Angle Stability – Just How Far Can She Roll?

Keyword(s):  
2021 ◽  
Vol 187 ◽  
pp. 538-541
Author(s):  
Lan Lu ◽  
Yongxing Che ◽  
Shouzhu Tang ◽  
Zhihao Xu ◽  
Hongchao Wu

2018 ◽  
pp. 107-121
Author(s):  
Philip A. Wilson
Keyword(s):  

Author(s):  
Eckhard Quandt ◽  
Stephan laBarré ◽  
Andreas Hartmann ◽  
Heinz Niedrig

Due to the development of semiconductor detectors with high spatial resolution -- e.g. charge coupled devices (CCDs) or photodiode arrays (PDAs) -- the parallel detection of electron energy loss spectra (EELS) has become an important alternative to serial registration. Using parallel detection for recording of energy spectroscopic large angle convergent beam patterns (LACBPs) special selected scattering vectors and small detection apertures lead to very low intensities. Therefore the very sensitive direct irradiation of a cooled linear PDA instead of the common combination of scintillator, fibre optic, and semiconductor has been investigated. In order to obtain a sufficient energy resolution the spectra are optionally magnified by a quadrupole-lens system.The detector used is a Hamamatsu S2304-512Q linear PDA with 512 diodes and removed quartz-glas window. The sensor size is 13 μm ∗ 2.5 mm with an element spacing of 25 μm. Along with the dispersion of 3.5 μm/eV at 40 keV the maximum energy resolution is limited to about 7 eV, so that a magnification system should be attached for experiments requiring a better resolution.


Author(s):  
Philip D. Hren

The pattern of bend contours which appear in the TEM image of a bent or curled sample indicates the shape into which the specimen is bent. Several authors have characterized the shape of their bent foils by this method, most recently I. Bolotov, as well as G. Möllenstedt and O. Rang in the early 1950’s. However, the samples they considered were viewed at orientations away from a zone axis, or at zone axes of low symmetry, so that dynamical interactions between the bend contours did not occur. Their calculations were thus based on purely geometric arguments. In this paper bend contours are used to measure deflections of a single-crystal silicon membrane at the (111) zone axis, where there are strong dynamical effects. Features in the bend contour pattern are identified and associated with a particular angle of bending of the membrane by reference to large-angle convergent-beam electron diffraction (LACBED) patterns.


Author(s):  
J.M.K. Wiezorek ◽  
H.L. Fraser

Conventional methods of convergent beam electron diffraction (CBED) use a fully converged probe focused on the specimen in the object plane resulting in the formation of a CBED pattern in the diffraction plane. Large angle CBED (LACBED) uses a converged but defocused probe resulting in the formation of ‘shadow images’ of the illuminated sample area in the diffraction plane. Hence, low-spatial resolution image information and high-angular resolution diffraction information are superimposed in LACBED patterns which enables the simultaneous observation of crystal defects and their effect on the diffraction pattern. In recent years LACBED has been used successfully for the investigation of a variety of crystal defects, such as stacking faults, interfaces and dislocations. In this paper the contrast from coherent precipitates and decorated dislocations in LACBED patterns has been investigated. Computer simulated LACBED contrast from decorated dislocations and coherent precipitates is compared with experimental observations.


Author(s):  
J.-Y. Wang ◽  
Y. Zhu ◽  
A.H. King ◽  
M. Suenaga

One outstanding problem in YBa2Cu3O7−δ superconductors is the weak link behavior of grain boundaries, especially boundaries with a large-angle misorientation. Increasing evidence shows that lattice mismatch at the boundaries contributes to variations in oxygen and cation concentrations at the boundaries, while the strain field surrounding a dislocation core at the boundary suppresses the superconducting order parameter. Thus, understanding the structure of the grain boundary and the grain boundary dislocations (which describe the topology of the boundary) is essential in elucidating the superconducting characteristics of boundaries. Here, we discuss our study of the structure of a Σ5 grain boundary by transmission electron microscopy. The characterization of the structure of the boundary was based on the coincidence site lattice (CSL) model.Fig.l shows two-beam images of the grain boundary near the projection. An array of grain boundary dislocations, with spacings of about 30nm, is clearly visible in Fig. 1(a), but invisible in Fig. 1(b).


Author(s):  
P.A. Midgley ◽  
R. Vincent ◽  
D. Cherns

The oxygenation of YBa2Cu3O7−x (YBCO) leads to an orthorhombic distortion of the unit cell to accommodate the extra oxygen atom. This makes the formation of twins energetically favourable with CuO4 planar unit chains running alternately along the a and b axes of the parent tetragonal structure. The geometry of this twinning is such that four possible twin variants may co-exist with the twin boundaries lying in the (110) or (110) planes of the deformed structure. The traces of these planes are not mutually perpendicular and thus the crystal is strained to allow for the mismatch. It is to the nature of this strain field that this work has been addressed.Sintered samples were prepared by crushing and dispersing the resultant powder onto a very fine Cu mesh grid. Single crystals were chemically thinned to perforation. No discernible artefacts were seen and similar results were obtained with either method.


Sign in / Sign up

Export Citation Format

Share Document