scholarly journals HEAT TRANSFER ANALYSIS FOR THE UNSTEADY UCM FLUID FLOW WITH HALL EFFECTS: THE TWO-PARAMETER LIE TRANSFORMATIONS

2020 ◽  
Vol 15 ◽  
Author(s):  
Musharafa Saleem ◽  
Muhammad Nazim Tufail ◽  
Qasim Ali Chaudhry
Author(s):  
Dieter E. Bohn ◽  
Volker J. Becker ◽  
Karsten A. Kusterer ◽  
Yokiu Otsuki ◽  
Takao Sugimoto ◽  
...  

Modern cooling configurations for turbine blades include complex serpentine-shaped cooling channel geometries for internal-forced convective cooling. The channels are ribbed in order to enhance the convective beat transfer. The design of such cooling configurations is within the power of modem CFD-codes with combined heat transfer analysis in solid body regions. One approach is the conjugate fluid flow and heat transfer solver, CHT-Flow, developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It takes into account of the mutual influences of internal and external fluid flow and heat transfer. The strategy of the procedure is based on a multi-block-technique and a direct coupling module for fluid flow regions and solid body regions. The configuration under investigation in the present paper is based on a test design of a convective cooled turbine blade with serpentine-shaped cooling passages and cooling gas ejection at the blade tip and the trailing edge. The numerical investigations focus on secondary flow phenomena in the ducts and on the heat transfer analysis at the cooling channel walls. In the first part, the cooling channels are investigated with adiabatic smooth & ribbed walls. The calculations are carried out for the stationary and rotating configuration. Concerning the heat transfer analysis, the results of the ribbed configuration with a fixed thermal boundary condition at the walls in the stationary case are presented. Furthermore, in order to demonstrate the capability of the conjugate method to work without thermal boundary conditions, the cooling configuration is calculated including the external blade flow and the blade walls with internal and external heat transfer under typical operation conditions of gas turbines. The numerical code is used to determine the blade surface temperatures.


2015 ◽  
Vol 7 (3) ◽  
pp. 369-386 ◽  
Author(s):  
K. Vajravelu ◽  
K. V. Prasad ◽  
S. R. Santhi

AbstractAn analysis is carried out to study the magnetohydrodynamic (MHD) flow and heat transfer characteristics of an electrically conducting dusty non-Newtonian fluid, namely, the upper convected Maxwell (UCM) fluid over a stretching sheet. The stretching velocity and the temperature at the surface are assumed to vary linearly with the distance from the origin. Using a similarity transformation, the governing nonlinear partial differential equations of the model problem are transformed into coupled non-linear ordinary differential equations and the equations are solved numerically by a second order finite difference implicit method known as the Keller-box method. Comparisons with the available results in the literature are presented as a special case. The effects of the physical parameters on the fluid velocity, the velocity of the dust particle, the density of the dust particle, the fluid temperature, the dust-phase temperature, the skin friction, and the wall-temperature gradient are presented through tables and graphs. It is observed that, Maxwell fluid reduces the wall-shear stress. Also, the fluid particle interaction reduces the fluid temperature in the boundary layer. Furthermore, the results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the dusty UCM fluid flow phenomena.


2019 ◽  
Vol 2019 (17) ◽  
pp. 3831-3835
Author(s):  
Salvatore La Rocca ◽  
Stephen J. Pickering ◽  
Carol N. Eastwick ◽  
Chris Gerada ◽  
Kristian Rönnberg

Author(s):  
Harry Garg ◽  
Vipender Singh Negi ◽  
Nidhi Garg ◽  
AK Lall

As part of the liquid cooling, most of the work has been done on fluid flow and heat transfer analysis for flow field. In the present work, the experimental and numerical studies of the microchannel the fluid flow and heat transfer analysis using nanoliquid coolant have been discussed. The practical aspects for increasing the high heat transfer coefficient from conventional studies and the different geometries and shapes of the microchannel are studied. The Aspect Ratio has significant effect on the microchannels and has been varied from AR 2, 4 and 8 to choose the optimum one. Three different fluids, i.e. de-ionized water, ethylene glycol, and a custom nanofluid are chosen for study. The proposed nanofluid almost interacts as another solid and has reduced thermal resistance, friction effect, and thus it almost vanishes high hot spots. Experimental analysis shows that the proposed nanofluid is excellent fluid for high rate heat removals. Moreover, the performance of the overall system is excellent in terms of high heat transfer coefficient, high thermal conductivity, and high capacity of the fluid. It has been reported that the heat transfer coefficient can be increased to 2.5 times of the water or any other fluid. It was also reported that the AR 4 rectangular-shaped channels are the optimum geometry in the Reynolds number ranging from 50 to 800 considering laminar flow. Examination and identification is based upon the practical result that includes fabrication constraints, commercial application, sealing of the system, ease of operation, and so on.


2005 ◽  
Vol 23 (7-8) ◽  
pp. 843-862 ◽  
Author(s):  
David M. Scott ◽  
Debendra K. Das ◽  
Vijayagandeeban Subbaihaannadurai ◽  
Vidyadhar A. Kamath

Sign in / Sign up

Export Citation Format

Share Document