scholarly journals Recurrence Interval of Slope Failures and Debris Flows Caused by Heavy Rainfall in Mountain Slope in Japan

2015 ◽  
Vol 55 (6) ◽  
pp. 325-333 ◽  
Author(s):  
Ken-ichi NISHIYAMA ◽  
Tsuyoshi WAKATSUKI
Landslides ◽  
2010 ◽  
Vol 7 (3) ◽  
pp. 325-338 ◽  
Author(s):  
Nobutomo Osanai ◽  
Takeshi Shimizu ◽  
Kazumasa Kuramoto ◽  
Shinichi Kojima ◽  
Tomoyuki Noro

2020 ◽  
Author(s):  
Velio Coviello ◽  
Lucia Capra ◽  
Gianluca Norini ◽  
Norma Dávila ◽  
Dolores Ferrés ◽  
...  

Abstract. The M7.1 Puebla-Morelos earthquake that occurred on 19 September 2017, with epicenter located ∼ 70 km SW from Popocatépetl volcano, severely hit central Mexico. Seismic shaking of the volcanic edifice induced by the earthquake triggered hundreds of shallow landslides on the volcanic flanks, remobilizing loose pyroclastic deposits and saturated soils. The largest landslides occurred on the slopes of aligned ENE-WSW-trending ravines on opposite sides of the volcanic cone, roughly parallel to the regional maximum horizontal stress and local volcanotectonic structural features. This configuration may suggest transient reactivation of local faults and extensional fractures as one of the mechanisms that has weakened the volcanic edifice and promoted the largest slope failures. The seismic records from a broadband station located at few kilometers from the main landslides are used to infer the intensity of ground shaking that triggered the slope failures. The material involved in the larger landslides, mainly ash and pumice fall deposits from late Holocene eruptions with a total volume of about 106 cubic meters, transformed into two large debris flows on the western slope of the volcano and one on its eastern side. The debris flows were highly viscous and contained abundant large woods (about 105 cubic meter). Their peculiar rheology is reconstructed by field evidences and analyzing the grain size distribution of samples from both landslide scars and deposits. This is the first time that such flows were observed at this volcano. Our work provides new insights to constrain a multi-hazard risk assessment for Popocatépetl and other continental active volcanoes.


Author(s):  
Rikiya KOBASHI ◽  
Masato KITA ◽  
Tatsuhiko UCHIDA ◽  
Yoshihisa KAWAHARA

2021 ◽  
Author(s):  
Philip Sedore ◽  
Alexandre Normandeau ◽  
Vittorio Maselli

<p>High-latitude fiords are susceptible to hazardous subaerial and submarine slope failures. Recent investigations have shown that past slope failures in fiords of Greenland and Alaska have generated devastating landslide induced tsunamis. Since coastal communities inhabit these high-latitude fiords, it is critical to understand the slope failure recurrence time, their distribution, potential triggers, and ability to generate tsunamis. In this study, we identified > 50 near-surface submarine landslides in Pangnirtung Fiord, eastern Baffin Island, Nunavut, using multibeam bathymetric and sub-bottom profiler data, along with sediment gravity-cores collected in 2019. Morphometric and morphological analyses, along with sedimentological analyses, were carried out on submarine landslide deposits to quantify their spatial and temporal distribution throughout the fiord and to evaluate the factors that may have triggered the slope failures.</p><p>Combining bathymetric with topographic data from unmanned aerial vehicle imagery, we found that most of these landslide deposits are relatively small (~ 0.08 km<sup>2</sup>) and are associated with outwash fans and steep fiord sidewalls. However, since most slope failure head scarps lie between the intertidal zone and ~30 m water depth, they could not be mapped, which makes it challenging to determine the triggers of the submarine slope failures. Radiocarbon dating reveals that most of these surficial landslide deposits are younger than 500 years old and that they were most likely triggered at different times. This finding highlights a high recurrence rate of slope failures within the fiord, suggesting that localised triggers are responsible for slope failures within the fiord, as opposed to widespread, seismically induced triggers which do not occur as frequently in the study area. In addition, the elongated morphology of the landslide deposits and the varying degrees of landslide deposit surface roughness supports localised point-source triggers. Since most landslides are associated with subaerial outwash fans and deltas, we suggest that triggers of these relatively frequent submarine landslides within Pangnirtung Fiord include rapid floodwater input, subaerial debris flows, and sea-ice loading during low tide.</p><p>This research shows that slope failures in a high-latitude fiord are affected by the interaction of numerous subaerial and submarine processes, leading us to speculate that a potential increase in the frequency of subaerial debris flows and river floods due to climate change may increase the recurrence of submarine landslides.<strong> </strong></p>


2014 ◽  
Vol 1010-1012 ◽  
pp. 1129-1139
Author(s):  
Jian Guo Yue ◽  
Yun Long Qi ◽  
Xue Li Wei ◽  
Ning Sheng Chen

Sediment deposition caused by debris flows is an important process controlling the evolution and regression of lake, and even a pervasive environmental problem. The frequent debris flows construct a vital links between mountain slope and Qiong Lake transporting lots of sediment into lake, and further making the lake depth and lake area shallower and smaller constantly. In the paper, we select the Guanba River in the northeast of Qiong Lake as a case studying the effect of debris flows on Lake depositon and the characteristics of typical debris flow, and document the sediment deposition in the Guanba River estuary. The control factors contributing to debris flow initiation indicate that the debris flows are drove by rainfall, earthquake and human activities together, and the occurrence frequency of debris flows in the study area will continue to increase.


2000 ◽  
pp. 207-220 ◽  
Author(s):  
Kazumasa KURAMOTO ◽  
Hiromi TETSUGA ◽  
Hideaki KIKUCHI ◽  
Osamu MORIKAWA ◽  
Keiichi MONMA ◽  
...  

2012 ◽  
Vol 599 ◽  
pp. 709-715 ◽  
Author(s):  
Xue Li Wei ◽  
Yun Long Qi ◽  
Qian Gong Cheng ◽  
Ning Sheng Chen

Sediment deposition caused by debris flows and floods is an important process controlling the evolution and regression of lake, and even a pervasive environmental problem. Qiong Lake is regards as a “bright phearl of the altiplano” in the Yunnan Plateau, and because debris flows construct a vital links between mountain slope and Qiong Lake, so the debris flows drove by rainfall will control the evolution rule of rift lakes. Based on the data of lake shorelines of Qiong Lake, it was found that the shoreline was push forward by 665 m since 1998. In addition, in the recent 30 years, turbidity current deposits have generated underwater levee and other landscapes in the deep water area of Qiong River. This paper has analyzed the matter migration process induced by debris flows, and presented the regime change pattern of debris flow along river channel and corresponding mechanical mechanism, mainly revealed the submarine transportation and deposition pattern of debris flow. The above studies provide a helpful way of comprehending the formation mechanism of turbidity flow induced by debris flow, and the transportation pattern. Based on severe sediment deposition catastrophes in this kind of rift lakes from debris flows and floods, disaster mitigation must be planned and appropriate engineering countermeasures put in place as soon as possible.


Author(s):  
Rudolf Vukelic

The term landslide or, less frequently, landslip, refers to several forms of mass wasting that include a wide range of ground movements, such as rock falls, deep-seated slope failures, mudflows and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients: from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides. Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability which produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event (such as a heavy rainfall, an earthquake, a slope cut to build a road, and many others), although this is not always identifiable.


Sign in / Sign up

Export Citation Format

Share Document