Evaluation of Mobility Model with MANET Routing Protocols

2016 ◽  
Vol 152 (8) ◽  
pp. 8-12
Author(s):  
V. K. ◽  
Sanjay Kumar
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Dávid Hrabčák ◽  
Martin Matis ◽  
L’ubomír Doboš ◽  
Ján Papaj

In the real world, wireless mobile devices are carried by humans. For this reason, it is useful if mobility models as simulation tools used to test routing protocols and other MANET-DTN features follow the behaviour of humans. In this paper, we propose a new social based mobility model called Students Social Based Mobility Model (SSBMM). This mobility model is inspired by the daily routine of student’s life. Since many current social based mobility models give nodes freedom in terms of movement according to social feeling and attractivity to other nodes or places, we focus more on the mandatory part of our life, such as going to work and school. In the case of students, this mandatory part of their life is studying in university according to their schedule. In their free time, they move and behave according to attractivity to other nodes or places of their origin. Finally, proposed SSBMM was tested and verified by Tools for Evaluation of Social Relation in Mobility Models and compared with random based mobility models. At the end, SSBMM was simulated to examine the impact of social relations on routing protocols.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881505 ◽  
Author(s):  
Ishtiaq Wahid ◽  
Ata Ul Aziz Ikram ◽  
Masood Ahmad ◽  
Fasee Ullah

With resource constraint’s distributed architecture and dynamic topology, network issues such as congestion, latency, power awareness, mobility, and other quality of service issues need to be addressed by optimizing the routing protocols. As a result, a number of routing protocols have been proposed. Routing protocols have trade-offs in performance parameters and their performance varies with the underlying mobility model. For designing an improved vehicular ad hoc network, three components of the network are to be focused: routing protocols, mobility models, and performance metrics. This article describes the relationship of these components, trade-offs in performance, and proposes a supervisory protocol, which monitors the scenario and detects the realistic mobility model through analysis of the microscopic features of the mobility model. An analytical model is used to determine the best protocol for a particular mobility model. The supervisory protocol then selects the best routing protocol for the mobility model of the current operational environment. For this, EstiNet 8.1 Simulator is used to validate the proposed scheme and compare its performance with existing schemes. Simulation results of the proposed scheme show the consistency in the performance of network throughout its operation.


Sign in / Sign up

Export Citation Format

Share Document