scholarly journals Animal Studies on Venom Neutralization potential of Metal-Herbal (Copper-Leucas zeylanica) Nanocomposites (MHNC) Against Naja naja and Bungarus Caeruleus Venoms

2021 ◽  
Vol 23 (09) ◽  
pp. 29-43
Author(s):  
Pooja S Dev ◽  
◽  
Dr. S. Meenatchisundaram ◽  

Objectives: The present study focuses on development of novel Metal-Herbal Nano composite (MHNC) formulation against Naja naja and Bungarus Caeruleus venoms on animal models. Methods: The venoms were procured from Irula snake catchers society in lyophilised forms. Herbal-metal nanocomposites were prepared in 1:1 combinations. Single strength concentration of Leucas zeylanica extracts and copper oxide metal nanoparticles was used to attain these ratio’s. In vivo venom neutralization analysis was carried out in Swiss albino mice. The LD50 and ED50 of the MHNC were determined. Results: The LD50 of the Naja naja venom was observed to be 0.19μg/g and 0.174μg/g for Bungarus Caeruleus venom. The ED50 of the MHNC against Naja naja venom was observed to be 14.22mg and 63.39mg for Bungarus Caeruleus venom. Conclusion: The MHNC developed in this study has significant venom neutralization potential against Naja naja and Bungarus Caeruleus venoms. Therefore, the MHNC can be used for development of anti-venom drugs.

Sci ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 45
Author(s):  
Eleonore Fröhlich

Animal testing is mandatory in drug testing and is the gold standard for toxicity and efficacy evaluations. This situation is expected to change in the future as the 3Rs principle, which stands for the replacement, reduction, and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animal testing have increased. The need to develop and use alternatives depends on the complexity of the research topic and also on the extent to which the currently used animal models can mimic human physiology and/or exposure. The lung morphology and physiology of commonly used animal species differs from that of human lungs, and the realistic inhalation exposure of animals is challenging. In vitro and in silico methods can assess important aspects of the in vivo effects, namely particle deposition, dissolution, action at, and permeation through, the respiratory barrier, and pharmacokinetics. This review discusses the limitations of animal models and exposure systems and proposes in vitro and in silico techniques that could, when used together, reduce or even replace animal testing in inhalation testing in the future.


2020 ◽  
Vol 21 (17) ◽  
pp. 6265
Author(s):  
Kanika Singh ◽  
Negar Jamshidi ◽  
Roby Zomer ◽  
Terrence J. Piva ◽  
Nitin Mantri

Prostate cancer is a major cause of death among men worldwide. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation, as well as potential anti-cancer agents. The aim of this review was to evaluate the effect of cannabinoids on in vivo prostate cancer models. The databases searched included PubMed, Embase, Scopus, and Web of Science from inception to August 2020. Articles reporting on the effect of cannabinoids on prostate cancer were deemed eligible. We identified six studies that were all found to be based on in vivo/xenograft animal models. Results: In PC3 and DU145 xenografts, WIN55,212-2 reduced cell proliferation in a dose-dependent manner. Furthermore, in LNCaP xenografts, WIN55,212-2 reduced cell proliferation by 66–69%. PM49, which is a synthetic cannabinoid quinone, was also found to result in a significant inhibition of tumor growth of up to 90% in xenograft models of LNCaP and 40% in xenograft models of PC3 cells, respectively. All studies have reported that the treatment of prostate cancers in in vivo/xenograft models with various cannabinoids decreased the size of the tumor, the outcomes of which depended on the dose and length of treatment. Within the limitation of these identified studies, cannabinoids were shown to reduce the size of prostate cancer tumors in animal models. However, further well-designed and controlled animal studies are warranted to confirm these findings.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
George Briassoulis ◽  
Efrossini Briassouli ◽  
Diana-Michaela Fitrolaki ◽  
Ioanna Plati ◽  
Kleovoulos Apostolou ◽  
...  

Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical “comparative study” model. Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P<0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P<0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P<0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P<0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.


2020 ◽  
Author(s):  
Syevda Tagirova Sirenko ◽  
Kenta Tsutsui ◽  
Kirill Tarasov ◽  
Dongmei Yang ◽  
Ashley N Wirth ◽  
...  

AbstractBackgroundTranslation of knowledge of sinoatrial nodal “SAN” automaticity gleaned from animal studies to human dysrhythmias, e.g. “Sick Sinus” Syndrome (SSS) requiring electronic pacemaker insertion has been sub-optimal, largely because heart rate (HR) varies widely across species.ObjectivesTo discover regulatory universal mechanisms of normal automaticity in SAN pacemaker cells that are self-similar across species.MethodSub-cellular Ca2+ releases, whole cell AP-induced Ca2+ transients and APs were recorded in isolated mouse, guinea-pig, rabbit and human SAN cells. Parametric Ca2+ and Vm Kinetic Transitions (PCVKT) during phases of AP cycles from their ignition to recovery were quantified.ResultsAlthough both action potential cycle lengths (APCL) and PCVKT during AP cycles differed across species by ten-fold, trans-species scaling of PCVKT during AP cycles and scaling, of PCVKT to APCL in cells in vitro, EKG RR intervals in vivo, and BM were self-similar (obeyed power laws) across species. Thus, APCL in vitro, HR in vivo, and BM of any species can be predicted by PCVKT during AP cycles in SAN cells measured in any single species in vitro.ConclusionsIn designing optimal HR to match widely different BM and energy requirements from mice to humans, nature did not “reinvent pacemaker cell wheels”, but differentially scaled kinetics of gears that regulate the rates at which the “wheels spin”. This discovery will facilitate the development of novel pharmalogic therapies and biologic pacemakers featuring a normal, wide-range rate regulation in animal models and the translation of these to humans to target recalcitrant human SSS.Condensed AbstractStudies in animal models are an important facet of cardiac arrhythmia research. Because HR differs by over ten-fold between some animals and humans, translation of knowledge about regulatory mechanisms of SAN normal automaticity gleaned from studies in animal models to target human SSS has been sub-optimal. Our findings demonstrating that trans-species self-similarity of sub-cellular and cellular mechanisms that couple Ca2+ to Vm during AP cycles can predict heart rate in vivo from mice to humans will inform on the design of novel studies in animal models and facilitate translation of this knowledge to target human disease.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1282
Author(s):  
Kévin Guillen ◽  
Pierre-Olivier Comby ◽  
Olivier Chevallier ◽  
Anne-Virginie Salsac ◽  
Romaric Loffroy

Cyanoacrylates were first used for medical purposes during World War II to close skin wounds. Over time, medical applications were developed, specifically in the vascular field. Uses now range from extravascular instillation in vascular grafting to intravascular injection for embolization. These applications were made possible by the conduct of numerous preclinical studies involving a variety of tests and outcome measures, including angiographic and histological criteria. Cyanoacrylates were first harshly criticized by vascular surgeons, chiefly due to their fast and irreversible polymerization. Over the past five years, however, cyanoacrylates have earned an established place in endovascular interventional radiology. Given the irreversible effects of cyanoacrylates, studies in animal models are ethically acceptable only if supported by reliable preliminary data. Many animal studies of cyanoacrylates involved the experimental creation of aneurysms or arteriovenous fistulas, whose treatment by endovascular embolization was then assessed. In clinical practice, however, injection into non-modified arteries may be desirable, for instance, to deprive a tumor of its vascular supply. To help investigators in this field select the animal models and procedures that are most appropriate for their objectives, we have reviewed all published in vivo animal studies that involved the injection of cyanoacrylates into non-modified arteries to discuss their main characteristics and endpoints.


Author(s):  
Eleonore Fröhlich

Testing in animals is mandatory in drug testing and the gold standard for evaluation of toxicity. This situation is expected to change in the future because the 3Rs principle, which stands for replacement, reduction and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animals experiments have increased. The necessity to develop and use of alternatives is influenced by the complexity of the research topic and also by the fact, to which extent the currently used animal models can mimic human physiology and/or exposure. Rodent lung morphology and physiology differs markedly for that of humans and inhalation exposure of the animals are challenging. In vitro and in silico methods can assess important aspects of the in vivo action, namely particle deposition, dissolution, action at and permeation across the respiratory barrier and pharmacokinetics. Out of the numerous homemade in vitro and in silico models some are available commercially or open access. This review discusses limitations of animal models and exposure systems and proposes a panel of in vitro and in silico techniques that, in the future, may replace animal experimentation in inhalation testing.


2021 ◽  
Vol 8 ◽  
Author(s):  
Estrella Lopez-Gordo ◽  
Alejandro Orlowski ◽  
Arthur Wang ◽  
Alan Weinberg ◽  
Susmita Sahoo ◽  
...  

Adeno-associated virus (AAV) vectors are promising candidates for gene therapy. However, a number of recent preclinical large animal studies failed to translate into the clinic. This illustrates the formidable challenge of choosing the animal models that promise the best chance of a successful translation into the clinic. Several of the most common AAV serotypes use sialic acid (SIA) as their primary receptor. However, in contrast to most mammals, humans lack the enzyme CMAH, which hydroxylates cytidine monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac) into cytidine monophosphate-N-glycolylneuraminic acid (CMP-Neu5Gc). As a result, human glycans only contain Neu5Ac and not Neu5Gc. Here, we investigate the tropism of AAV1, 5, 6 and 9 in wild-type C57BL/6J (WT) and CMAH knock-out (CMAH−/−) mice. All N-linked SIA-binding serotypes (AAV1, 5 and 6) showed significantly lower transduction of the heart in CMAH−/− when compared to WT mice (5–5.8-fold) and, strikingly, skeletal muscle transduction by AAV5 was almost 30-fold higher in CMAH−/− compared to WT mice. Importantly, the AAV tropism or distribution of expression among different organs was also affected. For AAV1, AAV5 and AAV6, expression in the heart compared to the liver was 4.6–8-fold higher in WT than in CMAH−/− mice, and for AAV5 the expression in the heart compared to the skeletal muscle was 57.3-fold higher in WT than in CMAH−/− mice. These data thus strongly suggest that the relative abundance of Neu5Ac and Neu5Gc plays a role in AAV tropism, and that results obtained in commonly used animal models might not translate into the clinic.


2020 ◽  
Vol 6 (4) ◽  
pp. 192
Author(s):  
Yanan Zhao ◽  
David S. Perlin

Rezafungin is a novel echinocandin drug being developed as a first-line option for treatment and prevention of invasive fungal infections. As a result of a structural modification in its parent molecule anidulafungin, rezafungin has acquired unique chemical stability conferring prolonged pharmacokinetics, as well as an administration advantage in the clinical setting compared to other drugs in the same class. Rezafungin displays potent in vitro activity against a wide spectrum of fungal pathogens, which is reflected in robust in vivo efficacy and/or pharmacodynamic studies using various animal models as well as in promising clinical trials data. This review describes in vivo characterization of rezafungin using animal models, current status of clinical development and key findings from these studies.


2020 ◽  
Vol 43 (5) ◽  
pp. 889-900 ◽  
Author(s):  
Weiwei Hu ◽  
Fang Huang ◽  
Liuxin Ning ◽  
Jun Hao ◽  
Jiangbo Wan ◽  
...  

Abstract Background: Tumor cell-derived exosomes (TEXs) have been widely used to induce antitumor immune responses in animal models and clinical trials. Similarly, leukemia cell-derived exosomes (LEXs) can induce antileukemia immune responses in animal models. However, the antileukemia immunity induced by LEXs is less effective, which may be due to an inadequate costimulatory capacity. Methods: In this study, we transduced L1210 leukemia cells with a lentiviral vector encoding two B7 costimulatory molecules (CD80, CD86) and obtained LEXs that highly expressed CD80 and CD86. The antileukemia immune response derived from these LEXs was examined in vitro and in vivo in animal models. Results: We found that B7 gene-modified LEXs, including LEX-CD80, LEX-CD86, and LEX-8086, could significantly boost the expression of CD80 and CD86 in dendritic cells (DCs) and promote the secretion of functional cytokines such as TNF-α and IL-12. Moreover, these B7 gene-modified LEXs, particularly LEX-CD8086, could effectively induce CD4+ T cell proliferation, Th1 cytokine secretion, and an antigen-specific anti-leukemia cytotoxic T lymphocyte (CTL) response. Additional animal studies indicated that immunization with B7 gene-modified LEXs, in particular LEX-CD8086, could significantly retard tumor growth compared to the control LEXnull group. Conclusions: This study sheds light on the feasibility of obtaining LEXs that overexpress costimulatory molecules via genetically modified leukemia cells, thereby enhancing their anti-leukemia immunity and providing a potential therapeutic strategy that contributes to leukemia immunotherapy.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 530 ◽  
Author(s):  
Jia-You Fang ◽  
Chih-Hung Lin ◽  
Tse-Hung Huang ◽  
Shih-Yi Chuang

About 40% of the world’s population is overweight or obese and exist at risk of developing type 2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is well established that IR and a progressive decline in functional β-cell mass are hallmarks of developing T2D. In order to mitigate the global prevalence of T2D, we must carefully select the appropriate animal models to explore the cellular and molecular mechanisms of T2D, and to optimize novel therapeutics for their safe use in humans. Flavonoids, a group of polyphenols, have drawn great interest for their various health benefits, and have been identified in naturally occurring anti-diabetic compounds. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might prove helpful in preventing T2D. In this review, we discuss the currently available rodent animal models of T2D and analyze the advantages, the limitations of each T2D model, and highlight the potential anti-diabetic effects of flavonoids as well as the mechanisms of their actions.


Sign in / Sign up

Export Citation Format

Share Document