An Efficient Correlation Power Analysis Attack Using Variational Mode Decomposition
Side channel attacks (SCAs) are now a real threat to cryptographic devices and correlation power analysis (CPA) is the most powerful attack. So far, a CPA attack usually exploits the leakage information from raw power consumption traces that collected from the attack device. In real attack scenarios, these traces collected from measurement equipment are usually contaminated by noise resulting in a decrease in attack efficiency. In this paper, we propose a variant CPA attack that exploits the leakage information from intrinsic mode functions (IMFs) of the power traces. These IMFs are the results of the variational mode decomposition (VMD) process on the raw power traces. This attack technique decreases the number of power traces for correctly recovering the secret key by approximately 13% in normal conditions and 60% in noisy conditions compared to a traditional CPA attack. Experiments were performed on power traces of AES-128 implemented in both microcontroller and FPGA by Sakura-G/W side channel evaluation board to verify the effectiveness of our method.