scholarly journals A technical and financial analysis of smart prepaid split meters on Eskom's electric power distribution

2021 ◽  
Author(s):  
◽  
Sindi Iren Ndaba

The implementation of a smart metering system in the distribution network does not only promote energy loss reduction, but also improves smart grids. This improvement in smart grids is achieved by the high level information infrastructure, monitoring, accurate measurement and metering operations that provide a widespread communication substructure. The direct effect of smart prepaid split meters is on energy flow management and billing advancing, to aiding the power quality when combined with a smart grid system. The study focused on the technical and financial effectiveness of the smart prepaid split metering system on the Eskom distribution network. The objectives of the study were, to investigate the severity of non-technical losses in distribution networks before and after smart prepaid split metering roll-out; to investigate the effectiveness of smart prepaid split metering for the utility and customers; to analyze the technical performance on medium voltage (MV) and low voltage (LV) power distribution networks before and after smart prepaid split metering roll-out; and to analyze the effectiveness of smart prepaid split metering for revenue collections. The questionnaire instrumental survey and historical data were used for the analyses. The primary data was obtained from the questionnaire tool. The collected data were analyzed with the Statistical Package for the Social Sciences software (SPSS) version 26.0 and Microsoft Excel 2016 in order to achieve multiobjective decision-making on the effectiveness of smart prepaid split metering in the utility and customer satisfaction. The different inferential statistics techniques used included regressions, correlations, multifactor analysis (MFA), factor analysis (FA) and chi-square test values. These were interpreted using the p-values to identify the change-point, trend and correlated best-fit time series for decision making. This study concluded that the use of a smart prepaid split metering system faces challenges such as a shortage of experts for new smart meter technology to respond to the faults which led to unfavorable results for power system average interruption duration. The study recommended that South Africa’s power utility (Eskom) should consider educating and train more technical officials concerning smart grids and smart metering to ensure that this metering technology, which is still in the early stages of development, functions efficiently

2020 ◽  
Vol 12 (10) ◽  
pp. 4317
Author(s):  
K. Prakash ◽  
F. R. Islam ◽  
K. A. Mamun ◽  
H. R. Pota

A distribution network is one of the main parts of a power system that distributes power to customers. While there are various types of power distribution networks, a recently introduced novel structure of an aromatic network could begin a new era in the distribution levels of power systems and designs of microgrids or smart grids. In order to minimize blackout periods during natural disasters and provide sustainable energy, improve energy efficiency and maintain stability of a distribution network, it is essential to configure/reconfigure the network topology based on its geographical location and power demand, and also important to realize its self-healing function. In this paper, a strategy for reconfiguring aromatic networks based on structures of natural aromatic molecules is explained. Various network structures are designed, and simulations have been conducted to justify the performance of each configuration. It is found that an aromatic network does not need to be fixed in a specific configuration (i.e., a DDT structure), which provides flexibility in designing networks and demonstrates that the successful use of such structures will be a perfect solution for both distribution networks and microgrid systems in providing sustainable energy to the end users.


Electrician ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 33
Author(s):  
Osea Zebua ◽  
Noer Soedjarwanto ◽  
Jemi Anggara

Intisari — Stabilitas tegangan telah menjadi perhatian yang penting dalam operasi jaringan distribusi tenaga listrik. Ketidakstabilan tegangan dapat menyebabkan kerusakan pada peralatan-peralatan listrik bila terjadi dalam waktu yang lama. Makalah ini bertujuan untuk merancang dan membuat peralatan deteksi stabilitas tegangan jangka panjang pada jaringan tegangan rendah. Sensor tegangan dan sensor arus digunakan untuk memperoleh data tegangan dan arus. Mikrokontroler Arduino digunakan untuk memproses perhitungan deteksi stabilitas tegangan jangka panjang dari data tegangan yang diperoleh dari sensor. Hasil deteksi kondisi stabilitas tegangan ditampilkan dengan indikator lampu led. Hasil pengujian pada jaringan distribusi tegangan rendah tiga fasa menunjukkan bahwa peralatan dapat mendeteksi gangguan stabilitas tegangan jangka panjang secara online dan dinamis.Kata kunci — Deteksi, stabilitas tegangan jangka panjang, jaringan distribusi tegangan rendah. Abstract — Voltage stability has become important concern in the operation of electric power distribution networks. Voltage instability can cause damage to electrical equipments if it occurs for a long time. This paper aims to design and build long-term voltage stability detection equipment on low-voltage network. Voltage sensors and current sensors are used to obtain voltage and current data. The Arduino microcontroller is used to process calculation of long-term voltage stability detection from data obtained from the sensors. The results of detection of voltage stability conditions are displayed with the LED indicators. Test result on three-phase low-voltage distribution network shows that equipment can detect long–term voltage stability disturbance online and dynamically.Keywords— Detection, long-term voltage stability, low-voltage distribution network.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3917 ◽  
Author(s):  
Giovanni Artale ◽  
Antonio Cataliotti ◽  
Valentina Cosentino ◽  
Dario Di Cara ◽  
Salvatore Guaiana ◽  
...  

The evolution of modern power distribution systems into smart grids requires the development of dedicated state estimation (SE) algorithms for real-time identification of the overall system state variables. This paper proposes a strategy to evaluate the minimum number and best position of power injection meters in radial distribution systems for SE purposes. Measurement points are identified with the aim of reducing uncertainty in branch power flow estimations. An incremental heuristic meter placement (IHMP) approach is proposed to select the locations and total number of power measurements. The meter placement procedure was implemented for a backward/forward load flow algorithm proposed by the authors, which allows the evaluation of medium-voltage power flows starting from low-voltage load measurements. This allows the reduction of the overall costs of measurement equipment and setup. The IHMP method was tested in the real 25-bus medium-voltage (MV) radial distribution network of the Island of Ustica (Mediterranean Sea). The proposed method is useful both for finding the best measurement configuration in a new distribution network and also for implementing an incremental enhancement of an existing measurement configuration, reaching a good tradeoff between instrumentation costs and measurement uncertainty.


Author(s):  
Satya PRAKASH ◽  
Manoj HANS ◽  
Vikas THORAT

The power distribution network has grown complex and vulnerable as it increases its demand. The system's reliability has become a prominent factor for the end-users, although the continuity of supply in the distribution network still remains a challenge. In order to achieve the same distribution, automation came into the picture. The term “Distribution Automation” usually refers to an advanced switching system, which works as a subsystem of the existing network. The purpose of the subsystem is to offer real-time observation and control in distribution networks and electricity market operations. Consequently, the development of an autonomous system for isolating failures and restoring power for the distribution of LV (low voltage)/MV (medium voltage) can be an attractive solution for improving energy facilities' reliability. Advanced management techniques are devices and algorithms used to analyze, diagnose, and predict conditions in a distribution network, as well as to identify and take appropriate corrective actions to eliminate, mitigate, and prevent power outages and power quality problems. To demonstrate the model, we used a PIC16F877, CT microcontroller, and a power supply unit.


Author(s):  
Sadeeb Simon Ottenburger

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This fact opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures whereby the way in which a distribution network is divided into interconnected microgrids is of particular importance. Such decompositions enable the systematic protection of important infrastructures and furthermore allow new forms of resilient power supply avoiding large-scale power blackouts. Therefore, the authors introduce a concept of criticality adapted to a power system relying on an advanced metering infrastructure and thereby propose a metric for an integrated resilience assessment of power distribution networks.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2888
Author(s):  
Youba Nait Belaid ◽  
Patrick Coudray ◽  
José Sanchez-Torres ◽  
Yi-Ping Fang ◽  
Zhiguo Zeng ◽  
...  

The introduction of pervasive telecommunication devices, in the scope of smart grids (SGs), has accentuated interest in the distribution network, which integrates a huge portion of new grid applications. High impact low probability (HILP) events, such as natural hazards, manmade errors, and cyber-attacks, as well as the inherent fragility of the distribution grid have propelled the development of effective resilience tools and methods for the power distribution network (PDN) to avoid catastrophic infrastructural and economical losses. Multiple resilience evaluation frameworks are proposed in the literature in order to assist distribution system operators (DSOs) in managing their networks when faced with exogenous threats. We conduct detailed analysis of existing quantitative resilience studies in both electric and telecommunication domains of a PDN, focusing on event type, metrics, temporal phases, uncertainty, and critical load. Our work adopts the standpoint of a DSO, whose target is to identify feasible resilience assessment frameworks, which apply to pre-defined requirements in terms of resilience evaluation objectives (planning, reactive response, or simple assessment), time of evaluation, and available enhancement strategies. Finally, results and observations on selected works are presented, followed by discussion of identified challenges and opportunities.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


2018 ◽  
Vol 20 (4) ◽  
pp. 417-429 ◽  
Author(s):  
Satyabrata Dash ◽  
Sukanta Dey ◽  
Deepak Joshi ◽  
Gaurav Trivedi

Purpose The purpose of this paper is to demonstrate the application of river formation dynamics to size the widths of power distribution network for very large-scale integration designs so that the wire area required by power rails is minimized. The area minimization problem is transformed into a single objective optimization problem subject to various design constraints, such as IR drop and electromigration constraints. Design/methodology/approach The minimization process is carried out using river formation dynamics heuristic. The random probabilistic search strategy of river formation dynamics heuristic is used to advance through stringent design requirements to minimize the wire area of an over-designed power distribution network. Findings A number of experiments are performed on several power distribution benchmarks to demonstrate the effectiveness of river formation dynamics heuristic. It is observed that the river formation dynamics heuristic outperforms other standard optimization techniques in most cases, and a power distribution network having 16 million nodes is successfully designed for optimal wire area using river formation dynamics. Originality/value Although many research works are presented in the literature to minimize wire area of power distribution network, these research works convey little idea on optimizing very large-scale power distribution networks (i.e. networks having more than four million nodes) using an automated environment. The originality in this research is the illustration of an automated environment equipped with an efficient optimization technique based on random probabilistic movement of water drops in solving very large-scale power distribution networks without sacrificing accuracy and additional computational cost. Based on the computation of river formation dynamics, the knowledge of minimum area bounded by optimum IR drop value can be of significant advantage in reduction of routable space and in system performance improvement.


Author(s):  
Jamal Abdul-Kareem Mohammed ◽  
Arkan Ahmed Hussein ◽  
Sahar R. Al-Sakini

<p>Power distribution network in Iraq still suffers from significant problems regarding electricity distribution level. The most important problem is the disturbances that are occurring on lines voltages, which in turn, will negatively affect sensitive loads they feed on. Protection of these loads could be achieved efficiently and economically using the dynamic voltage restorer DVR when installed between the voltage source and load to inject required compensation voltage to the network during the disturbances period. The DVR mitigates these disturbances via restoring the load voltage to a pre-fault value within a few milliseconds. To control the DVR work, dq0 transformation concept and PID method with sinusoidal pulse-width modulation SPWM based converter had been used to correct the disturbances and thus enhance the power quality of the distribution network. The DVR performance was tested by MATLAB/Simulink with all kinds of expected voltage disturbances and results investigated the effectiveness of the proposed method.</p>


2021 ◽  
Author(s):  
Chinmay Shah ◽  
Richard Wies

The conventional power distribution network is being transformed drastically due to high penetration of renewable energy sources (RES) and energy storage. The optimal scheduling and dispatch is important to better harness the energy from intermittent RES. Traditional centralized optimization techniques limit the size of the problem and hence distributed techniques are adopted. The distributed optimization technique partitions the power distribution network into sub-networks which solves the local sub problem and exchanges information with the neighboring sub-networks for the global update. This paper presents an adaptive spectral graph partitioning algorithm based on vertex migration while maintaining computational load balanced for synchronization, active power balance and sub-network resiliency. The parameters that define the resiliency metrics of power distribution networks are discussed and leveraged for better operation of sub-networks in grid connected mode as well as islanded mode. The adaptive partition of the IEEE 123-bus network into resilient sub-networks is demonstrated in this paper.


Sign in / Sign up

Export Citation Format

Share Document