scholarly journals Tracer measurements in the tropical tropopause layer during the AMMA/SCOUT-O3 aircraft campaign

2010 ◽  
Vol 10 (8) ◽  
pp. 3615-3627 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyse the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL, here ~350–375 K) and lower stratosphere above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, and horizontal inmixing across the subtropical tropopause. Besides, we examine the morphology of the stratospheric subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 mixing ratios indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located at potential temperatures between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin (several days or more). When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on gas-phase tracer TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights. Above the TTL this fraction increases to 0.3±0.1 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10° N and 25° N where isentropic mixing between these two regions may occur.

2009 ◽  
Vol 9 (6) ◽  
pp. 25049-25084 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyze the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL) above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, horizontal inmixing across the subtropical tropopause, and horizontal transport across the subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin. When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights, increasing above this level to 0.2±0.15 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10 and 25° N latitude where isentropic mixing between these two regions may occur.


2018 ◽  
Vol 18 (7) ◽  
pp. 5157-5171 ◽  
Author(s):  
Richard Newton ◽  
Geraint Vaughan ◽  
Eric Hintsa ◽  
Michal T. Filus ◽  
Laura L. Pan ◽  
...  

Abstract. Ozonesondes reaching the tropical tropopause layer (TTL) over the west Pacific have occasionally measured layers of very low ozone concentrations – less than 15 ppbv – raising the question of how prevalent such layers are and how they are formed. In this paper, we examine aircraft measurements from the Airborne Tropical Tropopause Experiment (ATTREX), the Coordinated Airborne Studies in the Tropics (CAST) and the Convective Transport of Active Species in the Tropics (CONTRAST) experiment campaigns based in Guam in January–March 2014 for evidence of very low ozone concentrations and their relation to deep convection. The study builds on results from the ozonesonde campaign conducted from Manus Island, Papua New Guinea, as part of CAST, where ozone concentrations as low as 12 ppbv were observed between 100 and 150 hPa downwind of a deep convective complex. TTL measurements from the Global Hawk unmanned aircraft show a marked contrast between the hemispheres, with mean ozone concentrations in profiles in the Southern Hemisphere between 100 and 150 hPa of between 10.7 and 15.2 ppbv. By contrast, the mean ozone concentrations in profiles in the Northern Hemisphere were always above 15.4 ppbv and normally above 20 ppbv at these altitudes. The CAST and CONTRAST aircraft sampled the atmosphere between the surface and 120 hPa, finding very low ozone concentrations only between the surface and 700 hPa; mixing ratios as low as 7 ppbv were regularly measured in the boundary layer, whereas in the free troposphere above 200 hPa concentrations were generally well in excess of 15 ppbv. These results are consistent with uplift of almost-unmixed boundary-layer air to the TTL in deep convection. An interhemispheric difference was found in the TTL ozone concentrations, with values < 15 ppbv measured extensively in the Southern Hemisphere but seldom in the Northern Hemisphere. This is consistent with a similar contrast in the low-level ozone between the two hemispheres found by previous measurement campaigns. Further evidence of a boundary-layer origin for the uplifted air is provided by the anticorrelation between ozone and halogenated hydrocarbons of marine origin observed by the three aircraft.


2017 ◽  
Author(s):  
Richard Newton ◽  
Geraint Vaughan ◽  
Eric Hintsa ◽  
Michal T. Filus ◽  
Laura L. Pan ◽  
...  

Abstract. Ozonesondes reaching the tropical tropopause layer (TTL) over the West Pacific have occasionally measured layers of very low ozone concentrations – less than 15 ppbv – raising the question of how prevalent such layers are and how they are formed. In this paper we examine aircraft measurements from the ATTREX, CAST and CONTRAST campaigns based in Guam in January–March 2014 for evidence of very low ozone concentrations and their relation to deep convection. The study builds on results from the ozonesonde campaign conducted from Manus Island, Papua New Guinea, as part of CAST, where ozone concentrations as low as 12 ppbv were observed between 100 and 150 hPa downwind of a deep convective complex. TTL measurements from the Global Hawk unmanned aircraft show a marked contrast between the hemispheres, with mean ozone concentrations in profiles in the Southern Hemisphere between 100 hPa and 150 hPa of between 10.5 ppbv and 14.2 ppbv. By contrast, the mean ozone concentrations in profiles in the Northern Hemisphere were always above 15 ppbv and normally above 20 ppbv at these altitudes. The CAST and CONTRAST aircraft sampled the atmosphere between the surface and 120 hPa, finding very low ozone concentrations only between the surface and 700 hPa; mixing ratios as low as 7 ppbv were regularly measured in the boundary layer, whereas in the free troposphere above 200 hPa concentrations were generally well in excess of 15 ppbv. These results are consistent with uplift of almost-unmixed boundary layer air to the TTL in deep convection. An interhemispheric difference was found in the TTL ozone concentrations, with values


2015 ◽  
Vol 15 (12) ◽  
pp. 16655-16696 ◽  
Author(s):  
R. Newton ◽  
G. Vaughan ◽  
H. M. A. Ricketts ◽  
L. L. Pan ◽  
A. J. Weinheimer ◽  
...  

Abstract. We present a series of ozonesonde profiles measured from Manus Island, Papua New Guinea, during February 2014. The experiment formed a part of a wider airborne campaign involving three aircraft based in Guam, to characterise the atmospheric composition above the tropical West Pacific in unprecedented detail. Thirty-nine ozonesondes were launched between 2 and 25 February, of which 34 gave good ozone profiles. Particular attention was paid to measuring the background current of the ozonesonde before launch, as this can amount to half the measured signal in the tropical tropopause layer (TTL). An unexpected contamination event affected these measurements and required a departure from standard operating procedures for the ozonesondes. Comparison with aircraft measurements allows validation of the measured ozone profiles and confirms that for well-characterized sondes (background current <50 nA) a constant background current should be assumed throughout the profile, equal to the minimum value measured during preparation just before launch. From this set of 34 ozonesondes, the minimum reproducible ozone concentration measured in the TTL was 12–13 ppbv; no examples of near-zero ozone concentration as reported by other recent papers were measured. The lowest ozone concentrations coincided with outflow from extensive deep convection to the east of Manus, consistent with uplift of ozone-poor air from the boundary layer. However, these minima were lower than the ozone concentration measured through most of the boundary layer, and were matched only by measurements at the surface in Manus.


2015 ◽  
Vol 15 (11) ◽  
pp. 6467-6486 ◽  
Author(s):  
W. Frey ◽  
R. Schofield ◽  
P. Hoor ◽  
D. Kunkel ◽  
F. Ravegnani ◽  
...  

Abstract. In this study we examine the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system. We use the Advanced Research Weather and Research Forecasting (WRF-ARW) model with a horizontal resolution of 333 m to examine this downward transport. The simulation reproduces the deep convective system, its timing and overshooting altitudes reasonably well compared to radar and aircraft observations. Passive tracers initialised at pre-storm times indicate the downward transport of air from the stratosphere to the upper troposphere as well as upward transport from the boundary layer into the cloud anvils and overshooting tops. For example, a passive ozone tracer (i.e. a tracer not undergoing chemical processing) shows an enhancement in the upper troposphere of up to about 30 ppbv locally in the cloud, while the in situ measurements show an increase of 50 ppbv. However, the passive carbon monoxide tracer exhibits an increase, while the observations show a decrease of about 10 ppbv, indicative of an erroneous model representation of the transport processes in the tropical tropopause layer. Furthermore, it could point to insufficient entrainment and detrainment in the model. The simulation shows a general moistening of air in the lower stratosphere, but it also exhibits local dehydration features. Here we use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.


2009 ◽  
Vol 9 (24) ◽  
pp. 9647-9660 ◽  
Author(s):  
C. Schiller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Plöger ◽  
F. H. Silva dos Santos ◽  
...  

Abstract. High-resolution water measurements from three tropical airborne missions in Northern Australia, Southern Brazil and West Africa in different seasons are analysed to study the transport and transformation of water in the tropical tropopause layer (TTL) and its impact on the stratosphere. The mean profiles are quite different according to the season and location of the campaigns, with lowest mixing ratios below 2 ppmv at the cold point tropopause during the Australian mission in November/December and high TTL mixing ratios during the African measurements in August. We present backward trajectory calculations considering freeze-drying of the air to the minimum saturation mixing ratio and initialised with climatological satellite data. This trajectory-based reconstruction of water agrees well with the observed H2O average profiles and therefore demonstrates that the water vapour set point in the TTL is primarily determined by the Lagrangian saturation history. Deep convection was found to moisten the TTL, in several events even above the cold point up to 420 K potential temperatures. However, our study does not provide evidence for a larger impact of these highly-localised events on global scales.


2020 ◽  
Author(s):  
Meike Rotermund ◽  
Ben Schreiner ◽  
Flora Kluge ◽  
Tilman Hüneke ◽  
Andreas Engel ◽  
...  

&lt;p&gt;Bromine greatly influences the UT/LS ozone concentrations, however the transport of bromine across the tropical tropopause layer and in particular across the extratropical tropopause is not well quantified. Air-borne measurements of atmospheric trace gases such as organic and inorganic bromine along the tropopause are studied during the WISE (Wave-driven ISentropic Exchange) research campaign over the northern Atlantic and western Europe from September 13 - October 21, 2017. The remote sensing instrument mini-DOAS (Differential Optical Absorption Spectroscopy) is mounted on the HALO (High Altitude and LOng range) aircraft and measures BrO (O&lt;sub&gt;3&lt;/sub&gt;, NO&lt;sub&gt;2&lt;/sub&gt; among other trace gases). The novel scaling method is applied to infer the target gas BrO mixing ratios from slant column densities using in-situ O&lt;sub&gt;3&lt;/sub&gt; measurements from the FAIRO instrument (operated by KIT) as the scaling gas. For each flight, the inferred mixing ratios are directly compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulated curtains of the trace gases along the flight path. The partitioning coefficient of inorganic bromine from CLaMS and all relevant organic halogen species and air mass ages (SF&lt;sub&gt;6&lt;/sub&gt;, CO&lt;sub&gt;2&lt;/sub&gt;) from the GhOST-MS instrument (operated by UFra) are used to determine the total bromine budget along the UT/LS. A climatology of organic, inorganic and total bromine is constructed with respect to the extratropical tropopause as well as the air mass ages. This indicates the interplay of bromine transport across the extratropical tropopause and of the transport of air via the lower branch from the tropics as well as potential losses of inorganic bromine by uptake onto and sedimentation of ice particles.&lt;/p&gt;


2006 ◽  
Vol 6 (12) ◽  
pp. 4755-4761 ◽  
Author(s):  
B.-M. Sinnhuber ◽  
I. Folkins

Abstract. The contribution of bromoform to the stratospheric bromine loading is estimated using the one-dimensional tropical mean model of Folkins and Martin (2005), which is constrained by observed mean profiles of temperature and humidity. In order to reach the stratosphere, bromoform needs to be lifted by deep convection into the tropical tropopause layer (TTL), above the level of zero radiative heating. The contribution of bromoform to stratospheric bromine then depends critically on the rate of removal of the degradation products of bromoform (collectively called Bry here) from the TTL, which is believed to be due to scavenging by falling ice. This relates the transport of short-lived bromine species into the stratosphere to processes of dehydration in the TTL. In the extreme case of dehydration occurring only through overshooting deep convection, the loss of Bry from the TTL may be negligible and consequently bromoform will fully contribute with its boundary layer mixing ratio to the stratospheric bromine loading, i.e. with 3 pptv for an assumed 1 pptv of bromoform in the boundary layer. For the other extreme that Bry is removed from the TTL almost instantaneously, the model calculations predict a contribution of about 0.5 pptv for the assumed 1 pptv of boundary layer bromoform. While this gives some constraints on the contribution of bromoform to stratospheric bromine, a key uncertainty in estimating the contribution of short-lived bromine source gases to the stratospheric bromine loading is the mechanism and rate of removal of Bry within the TTL.


2009 ◽  
Vol 9 (3) ◽  
pp. 11659-11698
Author(s):  
E. Palazzi ◽  
F. Fierli ◽  
F. Cairo ◽  
C. Cagnazzo ◽  
G. Di Donfrancesco ◽  
...  

Abstract. A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on the vertical tracers profiles, relative vertical tracers gradients, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS), using tropopause coordinates. Observations come from the four tropical campaigns performed from 1998 to 2006 with the research aircraft Geophysica and have been directly compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data. The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O3 and H2O-O3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified, first, by their differing chemical composition. The joint analysis and comparison of observed and modelled data allows us to evaluate the capability of the model in reproducing the observed vertical structure of the TTL and its variability, and also to assess whether observations from particular regions on a monthly timescale can be representative of the fine scale mean structure of the Tropical Tropopause Layer.


2010 ◽  
Vol 10 (2) ◽  
pp. 397-409 ◽  
Author(s):  
Y. Mébarki ◽  
V. Catoire ◽  
N. Huret ◽  
G. Berthet ◽  
C. Robert ◽  
...  

Abstract. Volume mixing ratio (vmr) vertical profiles of hydrogen chloride (HCl) are retrieved from in situ measurements performed by a balloon-borne infrared tunable diode laser absorption spectrometer (SPIRALE) during two balloon flights in the tropics (Teresina, Brazil, 5.1° S–42.9° W) in June 2005 and June 2008. HCl vertical profiles obtained from 15 to 31 km are presented and analysed to estimate the contribution of very short-lived substances (VSLS) to total stratospheric chlorine. Both retrieved vertical profiles of HCl from these flights agree very well with each other, with estimated overall uncertainties of 6% on vmr between 23 and 31 km. Upper limits of HCl vmr as low as 20 pptv in June 2008 and 30 pptv in June 2005 are inferred in the upper part of the tropical tropopause layer (TTL). Backward trajectory calculations and such low amounts suggest that the air masses sampled correspond to typical background conditions, i.e. neither influenced by recent tropospheric nor stratospheric air. Taking into account the recently reported VSL source gas measurements obtained in similar conditions (Laube et al., 2008) and the main intermediate degradation product gas COCl2 (Fu et al., 2007), a total VSLS contribution of 85±40 pptv to stratospheric chlorine is inferred. This refines the WMO (2007) estimation of 50 to 100 pptv, which was not taking into account any HCl contribution. In addition, comparisons of HCl measurements between SPIRALE and the Aura MLS satellite instrument in the tropical lower and middle stratosphere lead to a very good agreement. The previous agreement between MLS-deduced upper stratospheric total chlorine content and modelled values including 100 pptv of VSLS (Froidevaux et al., 2006) is thus supported by our present result about the VSLS contribution.


Sign in / Sign up

Export Citation Format

Share Document