scholarly journals Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China

2015 ◽  
Vol 15 (4) ◽  
pp. 2031-2049 ◽  
Author(s):  
B. Zheng ◽  
Q. Zhang ◽  
Y. Zhang ◽  
K. B. He ◽  
K. Wang ◽  
...  

Abstract. Severe regional haze pollution events occurred in eastern and central China in January 2013, which had adverse effects on the environment and public health. Extremely high levels of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) with dominant components of sulfate and nitrate are responsible for the haze pollution. Although heterogeneous chemistry is thought to play an important role in the production of sulfate and nitrate during haze episodes, few studies have comprehensively evaluated the effect of heterogeneous chemistry on haze formation in China by using the 3-D models due to of a lack of treatments for heterogeneous reactions in most climate and chemical transport models. In this work, the WRF-CMAQ model with newly added heterogeneous reactions is applied to East Asia to evaluate the impacts of heterogeneous chemistry and the meteorological anomaly during January 2013 on regional haze formation. As the parameterization of heterogeneous reactions on different types of particles is not well established yet, we arbitrarily selected the uptake coefficients from reactions on dust particles and then conducted several sensitivity runs to find the value that can best match observations. The revised CMAQ with heterogeneous chemistry not only captures the magnitude and temporal variation of sulfate and nitrate, but also reproduces the enhancement of relative contribution of sulfate and nitrate to PM2.5 mass from clean days to polluted haze days. These results indicate the significant role of heterogeneous chemistry in regional haze formation and improve the understanding of the haze formation mechanisms during the January 2013 episode.

2014 ◽  
Vol 14 (11) ◽  
pp. 16731-16776 ◽  
Author(s):  
B. Zheng ◽  
Q. Zhang ◽  
Y. Zhang ◽  
K. B. He ◽  
K. Wang ◽  
...  

Abstract. Severe regional haze pollution events occurred in eastern and central China in January 2013, which had adverse effects on the environment and public health. Extremely high levels of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) with dominant components of sulfate and nitrate are responsible for the haze pollution. Although heterogeneous chemistry is thought to play an important role in the production of sulfate and nitrate during haze episodes, few studies have comprehensively evaluated the effect of heterogeneous chemistry on haze formation in China by using the 3-D models due to of a lack of treatments for heterogeneous reactions in most climate and chemical transport models. In this work, the offline-coupled WRF-CMAQ model with newly added heterogeneous reactions is applied to East Asia to evaluate the impacts of heterogeneous chemistry and the meteorological anomaly during January 2013 on regional haze formation. The revised CMAQ with heterogeneous chemistry not only captures the magnitude and temporal variation of sulfate and nitrate, but also reproduces the enhancement of relative contribution of sulfate and nitrate to PM2.5 mass from clean days to polluted haze days. These results indicate the significant role of heterogeneous chemistry in regional haze formation and improve the understanding of the haze formation mechanisms during the January 2013 episode.


2020 ◽  
Author(s):  
Jian Zhang ◽  
Lei Liu ◽  
Liang Xu ◽  
Qiuhan Lin ◽  
Hujia Zhao ◽  
...  

Abstract. As one of the intense anthropogenic emission regions across the relatively high latitude (> 40° N) areas on the Earth, Northeast China faces serious problem on regional haze during long winter with half a year. Aerosols in polluted haze in Northeast China are poorly understood compared with the haze in other regions of China such as North China Plain. Here, we for the first time integrated bulk chemical measurements with single particle analysis from transmission electron microscopy (TEM), nanoscale secondary ion mass spectrometer (NanoSIMS), and atomic force microscopy (AFM) to obtain morphology, size, composition, aging process, and sources of aerosol particles collected during two contrasting regional haze events (Haze-I and Haze-II) at an urban site and a mountain site in Northeast China, and further investigated the causes of regional haze formation. Haze-I evolved from moderate (average PM2.5: 76–108 μg/m3) to heavy pollution (151–154 μg/m3), with the dominant PM2.5 component changing from organic matter (OM) (39–45 μg/m3) to secondary inorganic ions (94–101 μg/m3). Similarly, TEM observations showed that S-OM particles elevated from 29 % to 60 % by number at urban site and 64 % to 74 % at mountain site and 75–96 % of Haze-I particles included primary OM. Change of wind direction induced that Haze-I rapidly turned into Haze-II (185–223 μg/m3) with the predominant OM (98–133 μg/m3) and unexpectedly high K+ (3.8 μg/m3). TEM also showed that K-OM particles increased from 4–5 % by number to 50–52 %. Our study revealed a contrasting formation mechanism of these two haze events: Haze-I was induced by accumulation of primary OM emitted from residential coal burning and further deteriorated by secondary aerosol formation via heterogeneous reactions; Haze-II was caused by long-range transport of agricultural biomass burning emissions. Moreover, we found that 75–97 % of haze particles contained tarballs, but only 4–23 % contained black carbon and its concentrations were low at 2.7–4.3 μg/m3. The results highlight that abundant tarballs are important light-absorbing brown carbon in Northeast China during winter haze and further considered in climate models.


2020 ◽  
Author(s):  
Jianlin Hu ◽  
Lin Li ◽  
Jingyi Li ◽  
Xueying Wang ◽  
Kangjia Gong

<p>Although the air quality in China has been improved by collaborative efforts dedicating to mitigate the haze pollution, PM2.5 concentrations still remain high levels and the issue of increasing O<sub>3</sub> concentration has attracted more attention of the public. The YRD region has been suffering from both the PM2.5 and O3 pollution problems. To investigate the formation mechanisms and sources of PM2.5 and O3 in this region, a comprehensive EXPLORE-YRD campaign (EXPeriment on the eLucidation of theatmospheric Oxidation capacity and aerosol foRmation, and their Effects inYangtze River Delta) was carried out in May - June 2018. In this study, we investigate the contributions of different source categories to PM2.5 and O<sub>3</sub>. A source-oriented 3-D air quality model (CMAQ) was applied to analyze contributions of different emission sources to PM2.5 and O<sub>3 </sub>in the YRD region. Emissions were divided into eight source categories: industry, power, transportation, residential, agriculture, biogenic, wildfire, and other countries. Contribution from individual source category was quantified. The importance of anthropogenic and natural sources to PM2.5 and O<sub>3</sub> was discussed.</p>


2017 ◽  
Author(s):  
Yuanyuan Xie ◽  
Xingnan Ye ◽  
Zhen Ma ◽  
Ye Tao ◽  
Ruyu Wang ◽  
...  

Abstract. We characterize a representative haze event from a series of periodic particulate matter (PM) episodes that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, and effective density were measured online, along with analysis of water-soluble inorganic ions and single particle mass spectrometry. Regardless of pollution level, the mass ratio of SNA/PM1.0 (sulfate, nitrate, and ammonium) slightly fluctuated around 0.28 over the whole observation, suggesting that both secondary inorganic compounds and carbonaceous aerosols (including soot and organic matter) contributed substantially to the haze formation. Nitrate was the most abundant ionic species during hazy periods, indicating that NOx contributed more to haze formation in Shanghai than did SO2. The calculated PM concentration from particle size distribution displayed a variation pattern similar to that of measured PM1.0 during the representative PM episode, indicating that enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating accumulation of local emissions. Three "banana-shape" particle evolutions were consistent with the rapid increase in PM1.0 mass loading, indicating rapid size growth by condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that secondary transformation of NOx and SO2 was a major contributor to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes, were primarily responsible for the haze pollution in Shanghai during wintertime.


2019 ◽  
Vol 19 (14) ◽  
pp. 9351-9370 ◽  
Author(s):  
Huiyun Du ◽  
Jie Li ◽  
Xueshun Chen ◽  
Zifa Wang ◽  
Yele Sun ◽  
...  

Abstract. Regional transport and heterogeneous reactions have been shown to play crucial roles in haze formation over a megacity cluster centered on Beijing. In this study, the updated Nested Air Quality Prediction Model System (NAQPMS) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model were employed to investigate the evolution of aerosols – in terms of the number concentration, size distribution, and degree of aging – in Beijing during six haze episodes between 15 November and 15 December 2016, as part of the Air Pollution and Human Health–Beijing (APHH-Beijing) winter campaign of 2016. The model exhibited reasonable performance not only with respect to mass concentrations of PM2.5 and its components in Beijing but also regarding the number concentration, size distribution, and degree of aging. We revealed that regional transport played a non-negligible role in haze episodes, with contributions of 14 %–31 % to the surface PM2.5 mass concentration. The contribution of regional transport to secondary inorganic aerosols was larger than that to primary aerosols (30 %–63 % and 3 %–12 %, respectively). The chemical transformation of SO2 along the transport pathway from source regions to Beijing was the major source of SO42-. We also found that sulfate formed outside Beijing from SO2 emitted in Beijing; this sulfate was then blown back to Beijing and considerably influenced haze formation. Along the transport pathway, aerosols underwent aging, which altered the mass ratio of the coating of black carbon to black carbon (RBC) and the size distribution of number concentrations. During the episodes, the geometric mean diameter (GMD) increased from less than 100 nm at the initial site to approximately 120 nm at the final site (Beijing), and the RBC increased from 2–4 to 4–8. During haze episodes with high humidity, the average contributions of gas and aqueous chemistry, heterogeneous chemistry, and primary emission to sulfate were comparable. However, their relative contributions varied with pollution levels. Primary emissions had the greatest impact under light to moderate pollution levels, whereas heterogeneous chemistry had a stronger effect under high pollution levels.


2017 ◽  
Vol 17 (11) ◽  
pp. 7277-7290 ◽  
Author(s):  
Yuanyuan Xie ◽  
Xingnan Ye ◽  
Zhen Ma ◽  
Ye Tao ◽  
Ruyu Wang ◽  
...  

Abstract. We characterize a representative particulate matter (PM) episode that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The mass ratio of SNA ∕ PM1. 0 (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods, indicating that NOx contributed more to haze formation in Shanghai than did SO2. During the representative PM episode, the calculated PM was always consistent with the measured PM1. 0, indicating that the enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating the accumulation of local emissions. Three banana-shaped particle evolutions were consistent with the rapid increase of PM1. 0 mass loading, indicating that the rapid size growth by the condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that the secondary transformation of NOx and SO2 was one of the most important contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes were primarily responsible for the haze pollution in Shanghai during wintertime.


2021 ◽  
Author(s):  
Ye Kuang ◽  
Wanyun Xu ◽  
Linlin Liang ◽  
Yao He ◽  
Hongbin Cheng ◽  
...  

<p>Secondary aerosol (SA) frequently drives severe haze formation on the North China Plain. However, previous studies mostly focused on submicron SA formation, thus our understanding of SA formation on supermicron particles remains poor. In this study, PM2.5 chemical composition and PM10 number size distribution measurements revealed that the SA formation occurred in very distinct size ranges. In particular, SA formation on dust-dominated supermicron particles was surprisingly high and increased with relative humidity (RH). SA formed on supermicron aerosols reached comparable levels with that on submicron particles during evolutionary stages of haze episodes. These results suggested that dust particles served as a medium for rapid secondary organic and inorganic aerosol formation under favorable photochemical and RH conditions in a highly polluted environment. Further analysis indicated that SA formation pathways differed among distinct size ranges. Overall, our study highlights the importance of dust in SA formation during non-dust storm periods and the urgent need to perform size-resolved aerosol chemical and physical property measurements in future SA formation investigations that are extended to the coarse mode because the large amount of SA formed thereon might have significant impacts on ice nucleation, radiative forcing, and human health.</p>


2020 ◽  
Vol 20 (9) ◽  
pp. 5355-5372 ◽  
Author(s):  
Jian Zhang ◽  
Lei Liu ◽  
Liang Xu ◽  
Qiuhan Lin ◽  
Hujia Zhao ◽  
...  

Abstract. As one of the intense anthropogenic emission regions across the relatively high-latitude (>40∘ N) areas on Earth, northeast China faces the serious problem of regional haze during the heating period of the year. Aerosols in polluted haze in northeast China are poorly understood compared with the haze in other regions of China such as the North China Plain. Here, we integrated bulk chemical measurements with single-particle analysis from transmission electron microscopy (TEM), nanoscale secondary ion mass spectrometry (NanoSIMS), and atomic force microscopy (AFM) to obtain morphology, size, composition, aging process, and sources of aerosol particles collected during two contrasting regional haze events (Haze-I and Haze-II) at an urban site and a mountain site in northeast China and further investigated the causes of regional haze formation. Haze-I evolved from moderate (average PM2.5: 76–108 µg m−3) to heavy pollution (151–154 µg m−3), with the dominant PM2.5 component changing from organic matter (OM) (39–45 µg m−3) to secondary inorganic ions (94–101 µg m−3). Similarly, TEM observations showed that S-rich particles internally mixed with OM (named S-OM) increased from 29 % to 60 % by number at an urban site and 64 % to 74 % at a mountain site from the moderate Haze-I to heavy Haze-I events, and 75 %–96 % of Haze-I particles included primary OM. We found that change of wind direction caused Haze-I to rapidly turn into Haze-II (185–223 µg m−3) with predominantly OM (98–133 µg m−3) and unexpectedly high K+ (3.8 µg m−3). TEM also showed that K-rich particles internally mixed with OM (named K-OM) increased from 4 %–5 % by number to 50 %–52 %. The results indicate that there were different sources of aerosol particles causing the Haze-I and Haze-II formation: Haze-I was mainly induced by accumulation of primary OM emitted from residential coal burning and further deteriorated by secondary aerosol formation via heterogeneous reactions; Haze-II was caused by long-range transport of agricultural biomass burning emissions. Moreover, abundant primary OM particles emitted from coal and biomass burning were considered to be one typical brown carbon, i.e., tar balls. Our study highlights that large numbers of light-absorbing tar balls significantly contribute to winter haze formation in northeast China and they should be further considered in climate models.


2020 ◽  
Author(s):  
Jian Xu ◽  
Jia Chen ◽  
Na Zhao ◽  
Guochen Wang ◽  
Guangyuan Yu ◽  
...  

Abstract. Ammonia in the atmosphere is essential for the formation of fine particles that impact air quality and climate. Despite extensive prior research to disentangle the relationship between ammonia and haze pollution, the role of ammonia in haze formation in the high ammonia emitted regions is still not well understood. Aiming to better understand secondary inorganic aerosol (SNA) formation mechanisms under high ammonia conditions, one-year hourly measurement of water-soluble inorganic species (gas and particle) was conducted in a rural supersite in Shanghai. Exceedingly high levels of agricultural ammonia, constantly around 30 μg m−3, were observed. We find that ammonia gas-particle conversion ratio (ACR), as opposed to ammonia concentrations, plays a critical role in SNA formation during the haze period. By assessing the effects of various parameters, including temperature (T), aerosol water content (AWC), aerosol pH, and activity coefficient, it seems that AWC plays predominant regulating roles for ACR. We propose a self-amplifying feedback mechanism associated with ACR for the formation of SNA, which is consistent with diurnal variations of ACR, AWC, and SNA. Our results imply that reduction of ammonia emissions alone may not reduce SNA effectively at least in rural agricultural sites in China.


Sign in / Sign up

Export Citation Format

Share Document