scholarly journals Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant

2017 ◽  
Vol 17 (22) ◽  
pp. 13521-13543 ◽  
Author(s):  
Donald D. Lucas ◽  
Matthew Simpson ◽  
Philip Cameron-Smith ◽  
Ronald L. Baskett

Abstract. Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine-learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine-learning algorithms are trained on the ensemble data and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 103), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method satisfactorily determines the location, start time, duration and amount. In a 2 km × 2 km area of possible locations, the actual location is determined to within 200 m. The start time is determined to within 5 min out of 2 h, and the duration to within 50 min out of 4 h. Over a range of release amounts of 10 to 1000 kg, the estimated amount exceeds the actual amount of 146 kg by only 32 kg. The inversion also estimates probabilities of different WRF configurations. To best match the tracer observations, the highest-probability cases in WRF are associated with using a late initialization time and specific reanalysis data products.

2017 ◽  
Author(s):  
Donald D. Lucas ◽  
Matthew D. Simpson ◽  
Philip Cameron-Smith ◽  
Ronald L. Baskett

Abstract. Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine learning algorithms are trained on the ensemble data, and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 103), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the most likely inversion results are within about 200 meters of the known release location, 5 and 50 minutes of the release start and duration times, respectively, and 22 % of the release amount. The inversion also estimates probabilities of different combinations of WRF inputs of matching the tracer observations.


2013 ◽  
Vol 13 (6) ◽  
pp. 15567-15614 ◽  
Author(s):  
O. Saunier ◽  
A. Mathieu ◽  
D. Didier ◽  
M. Tombette ◽  
D. Quélo ◽  
...  

Abstract. The Chernobyl nuclear accident and more recently the Fukushima accident highlighted that the largest source of error on consequences assessment is the source term including the time evolution of the release rate and its distribution between radioisotopes. Inverse modeling methods, which combine environmental measurements and atmospheric dispersion models, have proven efficient in assessing source term due to an accidental situation (Gudiksen, 1989; Krysta and Bocquet, 2007; Stohl et al., 2012a; Winiarek et al., 2012). Most existing approaches are designed to use air sampling measurements (Winiarek et al., 2012) and some of them also use deposition measurements (Stohl et al., 2012a; Winiarek et al., 2013) but none of them uses dose rate measurements. However, it is the most widespread measurement system, and in the event of a nuclear accident, these data constitute the main source of measurements of the plume and radioactive fallout during releases. This paper proposes a method to use dose rate measurements as part of an inverse modeling approach to assess source terms. The method is proven efficient and reliable when applied to the accident at the Fukushima Daiichi nuclear power plant (FD-NPP). The emissions for the eight main isotopes 133Xe, 134Cs, 136Cs, 137Cs, 137mBa, 131I, 132I and 132Te have been assessed. Accordingly, 103 PBq of 131I, 35.5 PBq of 132I, 15.5 PBq of 137Cs and 12 100 PBq of noble gases were released. The events at FD-NPP (such as venting, explosions, etc.) known to have caused atmospheric releases are well identified in the retrieved source term. The estimated source term is validated by comparing simulations of atmospheric dispersion and deposition with environmental observations. The result is that the model-measurement agreement for all of the monitoring locations is correct for 80% of simulated dose rates that are within a factor of 2 of the observed values. Changes in dose rates over time have been overall properly reconstructed, especially in the most contaminated areas to the northwest and south of the FD-NPP. A comparison with observed atmospheric activity concentration and surface deposition shows that the emissions of caesiums and 131I are realistic but that 132I and 132Te are probably underestimated and noble gases are likely overestimated. Finally, an important outcome of this study is that the method proved to be perfectly suited to emergency management and could contribute to improve emergency response in the event of a nuclear accident.


2013 ◽  
Vol 13 (22) ◽  
pp. 11403-11421 ◽  
Author(s):  
O. Saunier ◽  
A. Mathieu ◽  
D. Didier ◽  
M. Tombette ◽  
D. Quélo ◽  
...  

Abstract. The Chernobyl nuclear accident, and more recently the Fukushima accident, highlighted that the largest source of error on consequences assessment is the source term, including the time evolution of the release rate and its distribution between radioisotopes. Inverse modeling methods, which combine environmental measurements and atmospheric dispersion models, have proven efficient in assessing source term due to an accidental situation (Gudiksen, 1989; Krysta and Bocquet, 2007; Stohl et al., 2012a; Winiarek et al., 2012). Most existing approaches are designed to use air sampling measurements (Winiarek et al., 2012) and some of them also use deposition measurements (Stohl et al., 2012a; Winiarek et al., 2014). Some studies have been performed to use dose rate measurements (Duranova et al., 1999; Astrup et al., 2004; Drews et al., 2004; Tsiouri et al., 2012) but none of the developed methods were carried out to assess the complex source term of a real accident situation like the Fukushima accident. However, dose rate measurements are generated by the most widespread measurement system, and in the event of a nuclear accident, these data constitute the main source of measurements of the plume and radioactive fallout during releases. This paper proposes a method to use dose rate measurements as part of an inverse modeling approach to assess source terms. The method is proven efficient and reliable when applied to the accident at the Fukushima Daiichi Nuclear Power Plant (FD-NPP). The emissions for the eight main isotopes 133Xe, 134Cs, 136Cs, 137Cs, 137mBa, 131I, 132I and 132Te have been assessed. Accordingly, 105.9 PBq of 131I, 35.8 PBq of 132I, 15.5 PBq of 137Cs and 12 134 PBq of noble gases were released. The events at FD-NPP (such as venting, explosions, etc.) known to have caused atmospheric releases are well identified in the retrieved source term. The estimated source term is validated by comparing simulations of atmospheric dispersion and deposition with environmental observations. In total, it was found that for 80% of the measurements, simulated and observed dose rates agreed within a factor of 2. Changes in dose rates over time have been overall properly reconstructed, especially in the most contaminated areas to the northwest and south of the FD-NPP. A comparison with observed atmospheric activity concentration and surface deposition shows that the emissions of caesiums and 131I are realistic but that 132I and 132Te are probably underestimated and noble gases are likely overestimated. Finally, an important outcome of this study is that the method proved to be perfectly suited to emergency management and could contribute to improve emergency response in the event of a nuclear accident.


Sign in / Sign up

Export Citation Format

Share Document