scholarly journals Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon

2019 ◽  
Vol 19 (17) ◽  
pp. 11587-11612 ◽  
Author(s):  
Jianzhong Ma ◽  
Christoph Brühl ◽  
Qianshan He ◽  
Benedikt Steil ◽  
Vlassis A. Karydis ◽  
...  

Abstract. Enhanced aerosol abundance in the upper troposphere and lower stratosphere (UTLS) associated with the Asian summer monsoon (ASM) is referred to as the Asian Tropopause Aerosol Layer (ATAL). The chemical composition, microphysical properties, and climate effects of aerosols in the ATAL have been the subject of discussion over the past decade. In this work, we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model at a relatively fine grid resolution (about 1.1×1.1∘) to numerically simulate the emissions, chemistry, and transport of aerosols and their precursors in the UTLS within the ASM anticyclone during the years 2010–2012. We find a pronounced maximum of aerosol extinction in the UTLS over the Tibetan Plateau, which to a large extent is caused by mineral dust emitted from the northern Tibetan Plateau and slope areas, lofted to an altitude of at least 10 km, and accumulating within the anticyclonic circulation. We also find that the emissions and convection of ammonia in the central main body of the Tibetan Plateau make a great contribution to the enhancement of gas-phase NH3 in the UTLS over the Tibetan Plateau and ASM anticyclone region. Our simulations show that mineral dust, water-soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction in the UTLS within the ASM anticyclone. Due to shielding of high background sulfate concentrations outside the anticyclone from volcanoes, a relative minimum of aerosol extinction within the anticyclone in the lower stratosphere is simulated, being most pronounced in 2011, when the Nabro eruption occurred. In contrast to mineral dust and nitrate concentrations, sulfate increases with increasing altitude due to the larger volcano effects in the lower stratosphere compared to the upper troposphere. Our study indicates that the UTLS over the Tibetan Plateau can act as a well-defined conduit for natural and anthropogenic gases and aerosols into the stratosphere.

2019 ◽  
Author(s):  
Jianzhong Ma ◽  
Christoph Brühl ◽  
Qianshan He ◽  
Benedikt Steil ◽  
Vlassis A. Karydis ◽  
...  

Abstract. Enhanced aerosol abundance in the upper troposphere and lower stratosphere (UTLS) associated with the Asian summer monsoon (ASM), is referred to as the Asian Tropopause Aerosol Layer (ATAL). The chemical composition, microphysical properties and climate effects of aerosols in the ATAL have been the subject of discussion over the past decade. In this work, we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model at a relatively fine grid resolution (about 1.1 × 1.1 degrees) to numerically simulate the emissions and chemistry of aerosols and their precursors in the UTLS within the ASM anticyclone during the years 2010–2012. We find a pronounced maximum in aerosol extinction in the UTLS over the Tibetan Plateau, which to a large extent is caused by mineral dust emitted from the northern Tibetan Plateau and slope areas, lofted to an altitude of at least 10 km, and accumulating within the anticyclonic circulation. Our simulations show that mineral dust, water soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction in the UTLS within the ASM anticyclone. Due to shielding of high background sulfate concentrations outside the anticyclone from volcanoes, a relative minimum of aerosol extinction within the anticyclone in the lower stratosphere is simulated, being most pronounced in 2011 when the Nabro eruption occurred. In contrast to mineral dust and nitrate concentrations, sulfate increases with increasing altitude due to the larger volcano effects in the lower stratosphere compared to the upper troposphere. Our study indicates that the UTLS over the Tibetan Plateau can act as a well-defined conduit for natural and anthropogenic gases and aerosols into the stratosphere.


2016 ◽  
Vol 16 (11) ◽  
pp. 6641-6663 ◽  
Author(s):  
Yixuan Gu ◽  
Hong Liao ◽  
Jianchun Bian

Abstract. We use the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the contribution of nitrate aerosol to aerosol concentrations in the upper troposphere and lower stratosphere (UTLS) over the Tibetan Plateau and the South Asian summer monsoon (TP/SASM) region during summertime of year 2005. Simulated surface-layer aerosol concentrations are compared with ground-based observations, and simulated aerosols in the UTLS are evaluated by using the Stratospheric Aerosol and Gas Experiment II satellite data. Simulations show elevated aerosol concentrations of sulfate, nitrate, ammonium, black carbon, organic carbon, and PM2.5 (particles with diameter equal to or less than 2.5 µm, defined as the sum of sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols in this study) in the UTLS over the TP/SASM region throughout the summer. Nitrate aerosol is simulated to be of secondary importance near the surface but the most dominant aerosol species in the UTLS over the studied region. Averaged over summertime and over the TP/SASM region, CNIT (the ratio of nitrate concentration to PM2.5 concentration) values are 5–35 % at the surface, 25–50 % at 200 hPa, and could exceed 60 % at 100 hPa. The mechanisms for the accumulation of nitrate in the UTLS over the TP/SASM region include vertical transport and the gas-to-aerosol conversion of HNO3 to form nitrate. The high relative humidity and low temperature associated with the deep convection over the TP/SASM region are favorable for the gas-to-aerosol conversion of HNO3.


2015 ◽  
Vol 15 (21) ◽  
pp. 32049-32099 ◽  
Author(s):  
Y. Gu ◽  
H. Liao

Abstract. We use the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the contribution of nitrate aerosol to aerosol concentrations in the upper troposphere and lower stratosphere (UTLS) over the Tibetan Plateau and the South Asian summer monsoon (TP/SASM) region during summertime of year 2005. Simulated surface-layer aerosol concentrations are compared with ground-based observations, and simulated aerosols in the UTLS are evaluated by using the Stratospheric Aerosol and Gas Experiment II satellite data. Simulations show elevated aerosol concentrations of sulfate, nitrate, ammonium, black carbon, organic carbon, and PM2.5 (particles with diameter equal or less than 2.5 μm) in the UTLS over the TP/SASM region throughout the summer. Nitrate aerosol is simulated to be the second largest aerosol species in the surface-layer but the most dominant aerosol species in the UTLS over the studied region. Averaged over summertime and over the TP/SASM region, CNIT (the ratio of nitrate concentration to PM2.5 concentration) values are 5–35 % at the surface, 25–50 % at 200 hPa, and exceed 60 % at 100 hPa. The mechanisms for the accumulation of nitrate in the UTLS over the TP/SASM region include vertical transport and the gas-to-aerosol conversion of HNO3 to form nitrate. The high relative humidity and low temperature associated with the deep convection over the TP/SASM region are favorable for the gas-to-aerosol conversion of HNO3.


2014 ◽  
Vol 14 (2) ◽  
pp. 3169-3191 ◽  
Author(s):  
Q. S. He ◽  
C. C. Li ◽  
J. Z. Ma ◽  
H. Q. Wang ◽  
X. L. Yan ◽  
...  

Abstract. Vertical profiles of aerosol extinction coefficients were measured by an Micro Pulse Lidar at Naqu (31.5° N, 92.1° E, 4508 m a.m.s.l.), a meteorological station located on the central part of the Tibetan Plateau during summer 2011. Observations show a persistent maximum in aerosol extinction coefficients in the upper troposphere–lower stratosphere (UTLS) within an anticyclone during the Asian summer monsoon. These aerosol layers were generally located at an altitude of 18–19 km m.s.l., 1–2 km higher than the tropopause, with broad layer depth ranging approximately 3–4 km. Variations in these aerosols are found to be closely related to the intensity of underlying deep convection. Efficient vertical transport resulting from the most intensive convection is considered to be most important for the enhancement of aerosols observed near the tropopause. Temporal variations in aerosol layer in UTLS over the Plateau show a significant peak at midnight. This further indicates that deep convection plays an important role in the accumulation of aerosols in UTLS over the Tibetan Plateau.


2019 ◽  
Vol 19 (13) ◽  
pp. 8399-8406 ◽  
Author(s):  
Qianshan He ◽  
Jianzhong Ma ◽  
Xiangdong Zheng ◽  
Xiaolu Yan ◽  
Holger Vömel ◽  
...  

Abstract. We measured the vertical profiles of backscatter ratio (BSR) using the balloon-borne, lightweight Compact Optical Backscatter AerosoL Detector (COBALD) instruments above Linzhi, located in the southeastern Tibetan Plateau, in the summer of 2014. An enhanced aerosol layer in the upper troposphere–lower stratosphere (UTLS), with BSR (455 nm) > 1.1 and BSR (940 nm) > 1.4, was observed. The color index (CI) of the enhanced aerosol layer, defined as the ratio of aerosol backscatter ratios (ABSRs) at wavelengths of 940 and 455 nm, varied from 4 to 8, indicating the prevalence of fine particles with a mode radius of less than 0.1 µm. We find that unlike the very small particles (mode radius smaller than 0.04 µm) at low relative humidity (RHi < 40 %), the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity. This result indicates that water vapor can play a very important role in increasing the size of fine particles in the UTLS over the Tibetan Plateau. Our observations provide observation-based evidence supporting the idea that aerosol particle hygroscopic growth is an important factor influencing the radiative properties of the Asian Tropopause Aerosol Layer (ATAL) during the Asian summer monsoon.


2020 ◽  
Vol 7 (3) ◽  
pp. 516-533 ◽  
Author(s):  
Jianchun Bian ◽  
Dan Li ◽  
Zhixuan Bai ◽  
Qian Li ◽  
Daren Lyu ◽  
...  

Abstract Due to its surrounding strong and deep Asian summer monsoon (ASM) circulation and active surface pollutant emissions, surface pollutants are transported to the stratosphere from the Tibetan Plateau region, which may have critical impacts on global climate through chemical, microphysical and radiative processes. This article reviews major recent advances in research regarding troposphere–stratosphere transport from the region of the Tibetan Plateau. Since the discovery of the total ozone valley over the Tibetan Plateau in summer from satellite observations in the early 1990s, new satellite-borne instruments have become operational and have provided significant new information on atmospheric composition. In addition, in situ measurements and model simulations are used to investigate deep convection and the ASM anticyclone, surface sources and pathways, atmospheric chemical transformations and the impact on global climate. Also challenges are discussed for further understanding critical questions on microphysics and microchemistry in clouds during the pathway to the global stratosphere over the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document