scholarly journals MIPAS observations of volcanic sulphate aerosol and sulphur dioxide in the stratosphere

2017 ◽  
Author(s):  
Annika Günther ◽  
Michael Höpfner ◽  
Björn-Martin Sinnhuber ◽  
Sabine Griessbach ◽  
Terry Deshler ◽  
...  

Abstract. Volcanic eruptions can increase the stratospheric sulphur content by orders of magnitude above the background level and are the most important source of variability of stratospheric sulphur loading. We present a set of vertical profiles of sulphate aerosol volume densities and derived liquid-phase H2SO4 mole-fractions for 2005–2012, retrieved from infrared limb emission measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board of the Environmental Satellite. The MIPAS aerosol dataset has been corrected for a possible altitude-dependent bias by comparison with balloon-borne in situ aerosol measurements at Laramie, Wyoming. The MIPAS data of stratospheric sulphate aerosol is linked to MIPAS observations of sulphur dioxide (SO2) with the help of Chemical Transport Model simulations. We investigate the production of sulphate aerosol and its fate from volcanically emitted SO2 for two volcanic case studies: the eruptions of Kasatochi in 2008 and Sarychev in 2009, which both occurred in the Northern Hemisphere mid-latitudes during boreal summer. We show that the MIPAS sulphate aerosol and SO2 data are qualitatively and quantitatively consistent to each other. Further, we demonstrate that the lifetime of SO2 is well described by its oxidation by hydroxyl radicals. While sedimentation of the sulphate aerosol plays a role, we find that the dominant mechanism controlling the stratospheric lifetime of sulphur after these volcanic eruptions at mid-latitudes is transport in the Brewer-Dobson circulation. Sulphur emitted by the two mid-latitude volcanoes resides mostly north of 30° N at altitudes of ~ 10–16 km, while at higher altitudes (~ 18–22 km) part of the volcanic sulphur is transported towards the equator where it is lifted into the stratospheric overworld and can further be transported into both hemispheres.

2018 ◽  
Vol 18 (2) ◽  
pp. 1217-1239 ◽  
Author(s):  
Annika Günther ◽  
Michael Höpfner ◽  
Björn-Martin Sinnhuber ◽  
Sabine Griessbach ◽  
Terry Deshler ◽  
...  

Abstract. Volcanic eruptions can increase the stratospheric sulfur loading by orders of magnitude above the background level and are the most important source of variability in stratospheric sulfur. We present a set of vertical profiles of sulfate aerosol volume densities and derived liquid-phase H2SO4 (sulfuric acid) mole fractions for 2005–2012, retrieved from infrared limb emission measurements performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board of the Environmental Satellite (Envisat). Relative to balloon-borne in situ measurements of aerosol at Laramie, Wyoming, the MIPAS aerosol data have a positive bias that has been corrected, based on the observed differences to the in situ data. We investigate the production of stratospheric sulfate aerosol from volcanically emitted SO2 for two case studies: the eruptions of Kasatochi in 2008 and Sarychev in 2009, which both occurred in the Northern Hemisphere midlatitudes during boreal summer. With the help of chemical transport model (CTM) simulations for the two volcanic eruptions we show that the MIPAS sulfate aerosol and SO2 data are qualitatively and quantitatively consistent with each other. Further, we demonstrate that the lifetime of SO2 is explained well by its oxidation by hydroxyl radicals (OH). While the sedimentation of sulfate aerosol plays a role, we find that the long-term decay of stratospheric sulfur after these volcanic eruptions in midlatitudes is mainly controlled by transport via the Brewer–Dobson circulation. Sulfur emitted by the two midlatitude volcanoes resides mostly north of 30∘ N at altitudes of ∼ 10–16 km, while at higher altitudes (∼ 18–22 km) part of the volcanic sulfur is transported towards the Equator where it is lifted into the stratospheric “overworld” and can further be transported into both hemispheres.


2007 ◽  
Vol 7 (3) ◽  
pp. 9053-9092 ◽  
Author(s):  
C. R. Hoyle ◽  
T. Berntsen ◽  
G. Myhre ◽  
I. S. A. Isaksen

Abstract. The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 76 Tg yr−1 by allowing semi-volatile species to condense on ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated, raising the possibility of an unaccounted for SOA source. Allowing SOA to form on ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to almost 9% of the total production. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas. This study underscores the need for SOA to be represented in a more realistic way in global aerosol models in order to better reproduce observations of organic aerosol burdens in industrialised and biomass burning regions.


2016 ◽  
Vol 9 (9) ◽  
pp. 4355-4373 ◽  
Author(s):  
Swagata Payra ◽  
Philippe Ricaud ◽  
Rachid Abida ◽  
Laaziz El Amraoui ◽  
Jean-Luc Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.


2019 ◽  
Author(s):  
Jinwoong Kim ◽  
Saroja Polavarapu ◽  
Douglas Chan ◽  
Michael Neish

Abstract. In this study, we present the development of a regional atmospheric transport model for greenhouse gas (GHG) simulation based on an operational weather forecast model and a chemical transport model at Environment and Climate Change Canada (ECCC), with the goal of improving our understanding of the high spatio-temporal resolution interaction between the atmosphere and surface GHG fluxes over Canada and the United States. The regional model uses 10 km × 10 km horizontal grid spacing and 80 vertical levels spanning the ground to 0.1 hPa. The lateral boundary conditions of meteorology and tracers are provided by the global transport model used for GHG simulation at ECCC. The performance of the regional model and added benefit of the regional model over our lower resolution global models is investigated in terms of modelled CO2 concentration and meteorological forecast quality for multiple seasons in 2015. We find that our regional model has the capability to simulate high spatial (horizontal and vertical) and temporal scales of atmospheric CO2 concentrations, based on comparisons to surface and aircraft observations. In addition, reduced bias and standard deviation of forecast error in boreal summer are obtained by the regional model. Better representation of model topography in the regional model reduces transport and representation errors significantly compared to the global model, especially in regions of complex topography, as revealed by the more precise and detailed structure of the CO2 diurnal cycle produced at observation sites and in model space. The new regional model will form the basis of a flux inversion system that estimates regional scale fluxes of GHGs over Canada.


2019 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Jonathan Davies ◽  
...  

Abstract. Pandora spectrometers can retrieve nitrogen dioxide (NO2) vertical column densities (VCDs) via two viewing geometries: direct-sun and zenith-sky. The direct-sun NO2 VCD measurements have high quality (0.1 DU accuracy in clear-sky conditions) and do not rely on any radiative transfer model to calculate air mass factors (AMFs); however, they are not available when the sun is obscured by clouds. To perform NO2 measurements in cloudy conditions, a simple but robust NO2 retrieval algorithm is developed for Pandora zenith-sky measurements. This algorithm derives empirical zenith-sky NO2 AMFs from coincident high-quality direct-sun NO2 observations. Moreover, the retrieved Pandora zenith-sky NO2 VCD data are converted to surface NO2 concentrations with a scaling algorithm that uses chemical-transport-model predictions and satellite measurements as inputs. NO2 VCDs and surface concentrations are retrieved from Pandora zenith-sky measurements made in Toronto, Canada, from 2015 to 2017. The retrieved Pandora zenith-sky NO2 data (VCD and surface concentration) show good agreement with both satellite and in situ measurements. The diurnal and seasonal variations of derived Pandora zenith-sky surface NO2 data also agree well with in situ measurements (diurnal difference within ±2 ppbv). Overall, this work shows that the new Pandora zenith-sky NO2 products have the potential to be used in various applications such as future satellite validation in moderate cloudy scenes and air quality monitoring.


2015 ◽  
Vol 8 (2) ◽  
pp. 381-408 ◽  
Author(s):  
B. Sič ◽  
L. El Amraoui ◽  
V. Marécal ◽  
B. Josse ◽  
J. Arteta ◽  
...  

Abstract. This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET, EMEP), and a model inter-comparison project (AeroCom) are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10) and a better correlation (from 0.06 to 0.32) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16), and a negative MNMB in the desert dust representation in the African dust outflow region (from −1.01 to −0.22). The updates in sedimentation produced a modest difference; the MNMB with MODIS data from 0.10 in the updated configuration went to 0.11 in the updated configuration only without the sedimentation updates. Yet, the updates in the emissions and the wet deposition made a stronger impact on the results; the MNMB was 0.27 and 0.21 in updated configurations only without emission, and only without wet deposition updates, respectively. Also, the lifetime, the extent, and the strength of the episodic aerosol events are better reproduced in the updated configuration. The wet deposition processes and the differences between the various configurations that were tested greatly influence the representation of the episodic events. However, wet deposition is not a continuous process; it has a local and episodic signature and its representation depends strongly on the precipitation regime in the model.


2016 ◽  
Vol 16 (17) ◽  
pp. 11415-11431 ◽  
Author(s):  
Marsailidh M. Twigg ◽  
Evgenia Ilyinskaya ◽  
Sonya Beccaceci ◽  
David C. Green ◽  
Matthew R. Jones ◽  
...  

Abstract. Volcanic emissions, specifically from Iceland, pose a pan-European risk and are on the UK National Risk Register due to potential impacts on aviation, public health, agriculture, the environment and the economy, from both effusive and explosive activity. During the 2014–2015 fissure eruption at Holuhraun in Iceland, the UK atmosphere was significantly perturbed. This study focuses one major incursion in September 2014, affecting the surface concentrations of both aerosols and gases across the UK, with sites in Scotland experiencing the highest sulfur dioxide (SO2) concentrations. The perturbation event observed was confirmed to originate from the fissure eruption using satellite data from GOME2B and the chemical transport model, EMEP4UK, which was used to establish the spatial distribution of the plume over the UK during the event of interest. At the two UK European Monitoring and Evaluation Program (EMEP) supersite observatories (Auchencorth Moss, SE Scotland, and Harwell, SE England) significant alterations in sulfate (SO42−) content of PM10 and PM2.5 during this event, concurrently with evidence of an increase in ultrafine aerosol most likely due to nucleation and growth of aerosol within the plume, were observed. At Auchencorth Moss, higher hydrochloric acid (HCl) concentrations during the September event (max  =  1.21 µg m−3, cf. annual average 0.12 µg m−3 in 2013), were assessed to be due to acid displacement of chloride (Cl−) from sea salt (NaCl) to form HCl gas rather than due to primary emissions of HCl from Holuhraun. The gas and aerosol partitioning at Auchencorth Moss of inorganic species by thermodynamic modelling confirmed the observed partitioning of HCl. Using the data from the chemical thermodynamic model, ISORROPIA-II, there is evidence that the background aerosol, which is typically basic at this site, became acidic with an estimated pH of 3.8 during the peak of the event.Volcano plume episodes were periodically observed by the majority of the UK air quality monitoring networks during the first 4 months of the eruption (August–December 2014), at both hourly and monthly resolution. In the low-resolution networks, which provide monthly SO2 averages, concentrations were found to be significantly elevated at remote “clean” sites in NE Scotland and SW England, with record-high SO2 concentrations for some sites in September 2014. For sites which are regularly influenced by anthropogenic emissions, taking into account the underlying trends, the eruption led to statistically unremarkable SO2 concentrations (return probabilities  > 0.1, ∼ 10 months). However, for a few sites, SO2 concentrations were clearly much higher than has been previously observed (return probability < 0.005,  > 3000 months). The Holuhraun Icelandic eruption has resulted in a unique study providing direct evidence of atmospheric chemistry perturbation of both gases and aerosols in the UK background atmosphere. The measurements can be used to both challenge and verify existing atmospheric chemistry of volcano plumes, especially those originating from effusive eruptions, which have been underexplored due to limited observations available in the literature. If all European data sets were collated this would allow improved model verification and risk assessments for future volcanic eruptions of this type.


2005 ◽  
Vol 5 (6) ◽  
pp. 12373-12401
Author(s):  
G. Berthet ◽  
N. Huret ◽  
F. Lefèvre ◽  
G. Moreau ◽  
C. Robert ◽  
...  

Abstract. In this paper we study the impact of the modelling of N2O on the simulation of NO2 and HNO3 by comparing in situ vertical profiles measured at mid-latitudes with the results of the Reprobus 3-D CTM (Three-dimensional Chemical Transport Model) computed with the kinetic parameters from the JPL recommendation in 2002. The analysis of the measured in situ profile of N2O shows particular features indicating different air mass origins. The measured N2O, NO2 and HNO3 profiles are not satisfyingly reproduced by the CTM when computed using the current 6-hourly ECMWF operational analysis. Improving the simulation of N2O transport allows us to calculate quantities of NO2 and HNO3 in reasonable agreement with observations. This is achieved using 3-hourly winds obtained from ECMWF forecasts. The best agreement is obtained by constraining a one-dimensional version of the model with the observed N2O. This study shows that modelling the NOy partitioning with better accuracy relies at least on a correct simulation of N2O and thus of total NOy.


2020 ◽  
Vol 20 (11) ◽  
pp. 3099-3115
Author(s):  
Marcus Hirtl ◽  
Barbara Scherllin-Pirscher ◽  
Martin Stuefer ◽  
Delia Arnold ◽  
Rocio Baro ◽  
...  

Abstract. Volcanic eruptions may generate volcanic ash and sulfur dioxide (SO2) plumes with strong temporal and vertical variations. When simulating these changing volcanic plumes and the afar dispersion of emissions, it is important to provide the best available information on the temporal and vertical emission distribution during the eruption. The volcanic emission preprocessor of the chemical transport model WRF-Chem has been extended to allow the integration of detailed temporally and vertically resolved input data from volcanic eruptions. The new emission preprocessor is tested and evaluated for the eruption of the Grimsvötn volcano in Iceland 2011. The initial ash plumes of the Grimsvötn eruption differed significantly from the SO2 plumes, posing challenges to simulate plume dynamics within existing modelling environments: observations of the Grimsvötn plumes revealed strong vertical wind shear that led to different transport directions of the respective ash and SO2 clouds. Three source terms, each of them based on different assumptions and observational data, are applied in the model simulations. The emission scenarios range from (i) a simple approach, which assumes constant emission fluxes and a predefined vertical emission profile, to (ii) a more complex approach, which integrates temporarily varying observed plume-top heights and estimated emissions based on them, to (iii) the most complex method that calculates temporal and vertical variability of the emission fluxes based on satellite observations and inversion techniques. Comparisons between model results and independent observations from satellites, lidar, and surface air quality measurements reveal the best performance of the most complex source term.


2021 ◽  
Vol 21 (7) ◽  
pp. 5269-5288
Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Astrid Manders ◽  
Arjo Segers ◽  
Dimitris Karagkiozidis ◽  
...  

Abstract. The evaluation of chemical transport models, CTMs, is essential for the assessment of their performance regarding the physical and chemical parameterizations used. While regional CTMs have been widely used and evaluated over Europe, their validation over Greece is limited. In this study, we investigate the performance of the Long Term Ozone Simulation European Operational Smog (LOTOS-EUROS) v2.2.001 regional chemical transport model in simulating nitrogen dioxide, NO2, over Greece from June to December 2018. In situ NO2 measurements obtained from 14 stations of the National Air Pollution Monitoring Network are compared with surface simulations over the two major cities of Greece, Athens and Thessaloniki. Overall the LOTOS-EUROS NO2 surface simulations compare very well to the in situ measurements showing a mild underestimation of the measurements with a mean relative bias of ∼-10 %, a high spatial correlation coefficient of 0.86 and an average temporal correlation of 0.52. The CTM underestimates the NO2 surface concentrations during daytime by ∼-50 ± 15 %, while it slightly overestimates during night-time ∼ 10 ± 35 %. Furthermore, the LOTOS-EUROS tropospheric NO2 columns are evaluated against ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) NO2 measurements in Athens and Thessaloniki. We report that the CTM tropospheric NO2 column simulations over both urban and rural locations represent the diurnal patterns and hourly levels for both summer and winter seasons satisfactorily. The relative biases range between ∼ −2 % and −35 %, depending on season and relative NO2 load observed. Finally, the CTM was assessed also against space-borne Sentinel-5 Precursor (S5P) carrying the Tropospheric Monitoring Instrument (TROPOMI) tropospheric NO2 observations. We conclude that LOTOS-EUROS simulates extremely well the tropospheric NO2 patterns over the region with very high spatial correlation of 0.82 on average, ranging between 0.66 and 0.95, with negative biases in the summer and positive in the winter. Updated emissions for the simulations and model improvements when extreme values of boundary layer height are encountered are further suggested.


Sign in / Sign up

Export Citation Format

Share Document