Sectorial and regional uncertainty analysis of the contribution of anthropogenic emissions to regional and global PM<sub>2.5</sub> health impacts
Abstract. In this work we couple the HTAPv2.2 global air pollutant emission inventory with the global source receptor model TM5-FASST to evaluate the relative contribution of the major anthropogenic emission sources (power generation, industry, ground transport, residential, agriculture and international shipping) to air quality and human health in 2010. We focus on particulate matter (PM) concentrations because of the relative importance of PM2.5 emissions in populated areas and the proven cumulative negative effects on human health. We estimate that in 2010 regional annual averaged anthropogenic PM2.5 concentrations varied between ca. 1 and 40 μg/m3 depending on the region, with the highest concentrations observed in China and India, and lower concentrations in Europe and North America. The relative contribution of anthropogenic emission source sectors to PM2.5 concentrations varies between the regions. European PM pollution is mainly influenced by the agricultural and residential sectors, while the major contributing sectors to PM pollution in Asia and the emerging economies are the power generation, industrial and residential sectors. We also evaluate the emission sectors and emission regions in which pollution reduction measures would lead to the largest improvement on the overall air quality. We show that in order to improve air quality, regional policies should be implemented (e.g. in Europe) due to the transboundary features of PM pollution. In addition, we investigate emission inventory uncertainties and their propagation to PM2.5 concentrations, in order to identify the most effective strategies to be implemented at sector and regional level to improve emission inventories knowledge and air quality. We show that the uncertainty of PM concentrations depends not only on the uncertainty of local emission inventories but also on that of the surrounding regions. Finally, we propagate emission inventories uncertainty to PM concentrations and health impacts.