scholarly journals Aerosol Optical Properties at SORPES in Nanjing, East China

Author(s):  
Yicheng Shen ◽  
Aki Virkkula ◽  
Aijun Ding ◽  
Jiaping Wang ◽  
Xuguang Chi ◽  
...  

Abstract. Aerosol optical properties (AOPs) and supporting parameters – particle number size distributions, mass concentrations and trace gases (NOx and NOy) – were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering: the average scattering coefficient was σsp = 410 ± 320 Mm−1, the absorption coefficient σap = 26 ± 19 Mm−1 and the single-scattering albedo SSA = 0.93 ± 0.03 for the green light. The SSA in Nanjing appears to be slightly higher than published values from several other sites in China and elsewhere. The average Ångström exponent of absorption (AAE) for the wavelength range 370–950 nm was 1.04 and the AAE range 0.7–1.4. These AAE values can be explained with different amounts of non-absorbing coating on pure BC cores and different core sizes so the data does not suggest any significant contribution to absorption by brown carbon. The AOPs had typical seasonal cycles with high σsp and σap in winter and lower in summer: the averages were σsp = 545 ± 425 Mm−1 and σap = 36 ± 24 Mm−1 in winter and σsp = 364 ± 294 Mm−1 and σap = 20 ± 13 Mm−1 in summer. The intensive AOPs had no clear seasonal cycles, the variations of them were rather related to the evolution of pollution episodes. The diurnal cycles of the intensive AOPs were clear and in in agreement with the cycle of the particle number size distribution. The diurnal cycle of SSA was similar to that of the air photochemical age, suggesting that the darkest aerosol originated from fresh traffic emissions. A Lagrangian retroplume analysis showed that the sources of high σsp and σap are mainly in eastern China. Synoptic weather dominated the cycle of AOPs in a temporal scale of 2–7 days. During pollution episodes, modeled PBLH decreased, whereas PM2.5 concentrations, σsp and σap typically increased gradually and remained high during several days but decreased faster, sometimes by even more than an order of magnitude within some hours. During the growth phase of the pollution episodes the intensive AOPs evolved clearly. The mass scattering efficiency MSE of of PM2.5 grew during the extended pollution episodes from ~4 m2 g−1 to ~6 m2 g−1 and the mass fraction of BCe decreased from ~10 % to ~2 % during the growth phase of the episodes. Particle growth resulted in b decreasing from more than 0.16 to less than 0.10, SSA growing from less than 0.9 to more than 0.95 and radiative forcing efficiency RFE growing from less than −26 W m−2 τ−1 to more than −24 W m−2 τ−1. In other words, the darker aerosol – the aerosol that had a higher BC mass fraction – had a more negative radiative forcing efficiency, i.e., they have the property of cooling the atmosphere more efficiently per unit optical depth than the aerosol with the higher SSA and a lower BC mass fraction. This counterintuitive result is due to the size of the particles: the upscatter fraction of small particles is higher than that of the big ones which more than compensates the darkness of them. The RFE probability distribution at SORPES was clearly more narrow than at a clean background site which is in agreement with a published RFE climatology.

2018 ◽  
Vol 18 (8) ◽  
pp. 5265-5292 ◽  
Author(s):  
Yicheng Shen ◽  
Aki Virkkula ◽  
Aijun Ding ◽  
Jiaping Wang ◽  
Xuguang Chi ◽  
...  

Abstract. Aerosol optical properties (AOPs) and supporting parameters – particle number size distributions, PM2.5 mass concentrations, and the concentrations of trace gases (NOx and NOy) – were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering: the average scattering coefficient was σsp=403 ± 314 Mm−1, the absorption coefficient σap=26 ± 19 Mm−1, and the single-scattering albedo SSA = 0.93 ± 0.03 for green light. The SSA in Nanjing appears to be slightly higher than published values from several other sites in China and elsewhere. The average Ångström exponent of absorption (AAE) for the wavelength range 370–950 nm was 1.04 and the AAE range was 0.7–1.4. These AAE values can be explained with different amounts of non-absorbing coating on pure black carbon (BC) cores and different core sizes rather than contribution by brown carbon. The AOPs had typical seasonal cycles with high σsp and σap in winter and low ones in summer: the averages were σsp=544 ± 422 and σap=36 ± 24 Mm−1 in winter and σsp=342 ± 281 and σap=20 ± 13 Mm−1 in summer. The intensive AOPs had no clear seasonal cycles, the variations in them were rather related to the evolution of pollution episodes. The diurnal cycles of the intensive AOPs were clear and in agreement with the cycle of the particle number size distribution. The diurnal cycle of SSA was similar to that of the air photochemical age, suggesting that the darkest aerosol originated from fresh traffic emissions. A Lagrangian retroplume analysis showed that the potential source areas of high σsp and σap are mainly in eastern China. Synoptic weather phenomena dominated the cycle of AOPs on a temporal scale of 3–7 days. During pollution episodes, modeled boundary layer height decreased, whereas PM2.5 concentrations and σsp and σap typically increased gradually and remained high during several days but decreased faster, sometimes by even more than an order of magnitude within some hours. During the growth phase of the pollution episodes the intensive AOPs evolved clearly. The mass scattering efficiency MSE of PM2.5 grew during the extended pollution episodes from ∼ 4 to ∼ 6 m2 g−1 and the mass fraction of BCe decreased from ∼ 10 to ∼ 3 % during the growth phase of the episodes. Particle growth resulted in the backscatter fraction decreasing from more than 0.16 to less than 0.10, SSA growing from less than 0.9 to more than 0.95, and radiative forcing efficiency (RFE) changing from less than −26 W m−2 to more than −24 W m−2, which means that the magnitude of RFE decreased. The RFE probability distribution at SORPES was clearly narrower than at a clean background site which is in agreement with a published RFE climatology.


2014 ◽  
Vol 7 (5) ◽  
pp. 2503-2516 ◽  
Author(s):  
K. Klingmüller ◽  
B. Steil ◽  
C. Brühl ◽  
H. Tost ◽  
J. Lelieveld

Abstract. The modelling of aerosol radiative forcing is a major cause of uncertainty in the assessment of global and regional atmospheric energy budgets and climate change. One reason is the strong dependence of the aerosol optical properties on the mixing state of aerosol components, such as absorbing black carbon and, predominantly scattering sulfates. Using a new column version of the aerosol optical properties and radiative-transfer code of the ECHAM/MESSy atmospheric-chemistry–climate model (EMAC), we study the radiative transfer applying various mixing states. The aerosol optics code builds on the AEROPT (AERosol OPTical properties) submodel, which assumes homogeneous internal mixing utilising the volume average refractive index mixing rule. We have extended the submodel to additionally account for external mixing, partial external mixing and multilayered particles. Furthermore, we have implemented the volume average dielectric constant and Maxwell Garnett mixing rule. We performed regional case studies considering columns over China, India and Africa, corroborating much stronger absorption by internal than external mixtures. Well-mixed aerosol is a good approximation for particles with a black-carbon core, whereas particles with black carbon at the surface absorb significantly less. Based on a model simulation for the year 2005, we calculate that the global aerosol direct radiative forcing for homogeneous internal mixing differs from that for external mixing by about 0.5 W m−2.


2016 ◽  
Author(s):  
Simone Dietmüller ◽  
Patrick Jöckel ◽  
Holger Tost ◽  
Markus Kunze ◽  
Cathrin Gellhorn ◽  
...  

Abstract. The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a basemodel via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT and ORBIT. The submodel RAD (with shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) on-line radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of on-line radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2017 ◽  
Vol 166 ◽  
pp. 340-350 ◽  
Author(s):  
Xingna Yu ◽  
Rui Lü ◽  
Chao Liu ◽  
Liang Yuan ◽  
Yixing Shao ◽  
...  

2018 ◽  
Vol 209 ◽  
pp. 36-49 ◽  
Author(s):  
C. Viswanatha Vachaspati ◽  
G. Reshma Begam ◽  
Y. Nazeer Ahammed ◽  
K. Raghavendra Kumar ◽  
R.R. Reddy

2017 ◽  
Vol 10 (1) ◽  
pp. 433-452 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler ◽  
Stefan Kinne ◽  
Karsten Peters ◽  
Sebastian Rast ◽  
...  

Abstract. A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shape of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850–2016) are derived by scaling the plumes with associated national emission sources of SO2 and NH3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be −0.6 and −0.5 W m−2, respectively. Forcing from aerosol–cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small; hence, the clear-sky forcing, which is more readily measurable, provides a good estimate of the total aerosol forcing.


Sign in / Sign up

Export Citation Format

Share Document