scholarly journals Linking the uncertainty in simulated arctic ozone losses to modelling of tropical stratospheric water vapour

2018 ◽  
Author(s):  
Laura Thölix ◽  
Alexey Karpechko ◽  
Leif Backman ◽  
Rigel Kivi

Abstract. Stratospheric water vapor plays a key role in radiative and chemical processes, it e.g. influences the chemical ozone loss via controlling the polar stratospheric cloud formation in the polar stratosphere. The amount of water entering the stratosphere through the tropical tropopause differs substantially between chemistry-climate models. This is because the present-day models have difficulties in capturing the whole complexity of processes that control the water transport across the tropopause. As a result there are large differences in the stratospheric water vapour between the models. In this study we investigate the sensitivity of simulated Arctic ozone loss to the amount of water, which enters the stratosphere through the tropical tropopause. We used a chemical transport model, FinROSE-CTM, forced by ERA-Interim meteorology. The water vapour concentration in the tropical tropopause was varied between 0.5 and 1.6 times the concentration in ERA-Interim, which is similar to the range seen in chemistry climate models. The water vapour changes in the tropical tropopause led to about 1.5 and 2 ppm more water vapour in the Arctic polar vortex compared to the ERA-Interim, respectively. We found that the impact of water vapour changes on ozone loss in the Arctic polar vortex depend on the meteorological conditions. Polar stratospheric clouds form in the cold conditions within the Arctic vortex, and chlorine activation on their surface lead to ozone loss. If the cold conditions persist long enough (e.g. in 2010/11), the chlorine activation is nearly complete. In this case addition of water vapour to the stratosphere increased the formation of ICE clouds, but did not increase the chlorine activation and ozone destruction significantly. In the warm winter 2012/13 the impact of water vapour concentration on ozone loss was small, because the ozone loss was mainly NOx induced. In intermediately cold conditions, e.g. 2013/14, the effect of added water vapour was more prominent than in the other studied winters. The results show that the simulated water vapour concentration in the tropical tropopause has a significant impact on the Arctic ozone loss and deserves attention in order to improve future projections of ozone layer recovery.

2018 ◽  
Vol 18 (20) ◽  
pp. 15047-15067
Author(s):  
Laura Thölix ◽  
Alexey Karpechko ◽  
Leif Backman ◽  
Rigel Kivi

Abstract. Stratospheric water vapour influences the chemical ozone loss in the polar stratosphere via control of the polar stratospheric cloud formation. The amount of water vapour entering the stratosphere through the tropical tropopause differs substantially between simulations from chemistry–climate models (CCMs). This is because the present-day models, e.g. CCMs, have difficulties in capturing the whole complexity of processes that control the water transport across the tropopause. As a result there are large differences in the stratospheric water vapour between the models. In this study we investigate the sensitivity of simulated Arctic ozone loss to the simulated amount of water vapour that enters the stratosphere through the tropical tropopause. We used a chemical transport model, FinROSE-CTM, forced by ERA-Interim meteorology. The water vapour concentration in the tropical tropopause was varied between 0.5 and 1.6 times the concentration in ERA-Interim, which is similar to the range seen in chemistry–climate models. The water vapour changes in the tropical tropopause led to about 1.5 ppmv less and 2 ppmv more water vapour in the Arctic polar vortex compared to the ERA-Interim, respectively. The change induced in the water vapour concentration in the tropical tropopause region was seen as a nearly one-to-one change in the Arctic polar vortex. We found that the impact of water vapour changes on ozone loss in the Arctic polar vortex depends on the meteorological conditions. The strongest effect was in intermediately cold stratospheric winters, such as the winter of 2013/2014, when added water vapour resulted in 2 %–7 % more ozone loss due to the additional formation of polar stratospheric clouds (PSCs) and associated chlorine activation on their surface, leading to ozone loss. The effect was less pronounced in cold winters such as the 2010/2011 winter because cold conditions persisted long enough for a nearly complete chlorine activation, even in simulations with prescribed stratospheric water vapour amount corresponding to the observed values. In this case addition of water vapour to the stratosphere led to increased areas of ICE PSCs but it did not increase the chlorine activation and ozone destruction significantly. In the warm winter of 2012/2013 the impact of water vapour concentration on ozone loss was small because the ozone loss was mainly NOx-induced. The results show that the simulated water vapour concentration in the tropical tropopause has a significant impact on the Arctic ozone loss and therefore needs to be well simulated in order to improve future projections of the recovery of the ozone layer.


2008 ◽  
Vol 8 (3) ◽  
pp. 12227-12252 ◽  
Author(s):  
S. Lossow ◽  
M. Khaplanov ◽  
J. Gumbel ◽  
J. Stegman ◽  
G. Witt ◽  
...  

Abstract. The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden, with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In-situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using water vapour as a dynamical tracer it was possible to directly relate the water data to the position of the polar vortex. The measurement probed extra-vortex air below 19 km and in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour characteristics. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere and are consistent with efficient downward transport of air inside the vortex. It is evident that in-situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.


2015 ◽  
Vol 15 (16) ◽  
pp. 22013-22045
Author(s):  
L. Thölix ◽  
L. Backman ◽  
R. Kivi ◽  
A. Karpechko

Abstract. This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry climate model simulation covering years 1990–2013 is compared to observations (satellite and frostpoint hygrometer soundings) and the sources of stratospheric water vapour are studied. According to observations and the simulations the water vapour concentration in the Arctic stratosphere started to increase after year 2006, but around 2011 the concentration started to decrease. Model calculations suggest that the increase in water vapour during 2006–2011 (at 56 hPa) is mostly explained by transport related processes, while the photochemically produced water vapour plays a relatively smaller role. The water vapour trend in the stratosphere may have contributed to increased ICE PSC occurrence. The increase of water vapour in the precense of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. The polar vortex was unusually cold in early 2010 and allowed large scale formation of the polar stratospheric clouds. The cold pool in the stratosphere over the Northern polar latitudes was large and stable and a large scale persistent dehydration was observed. Polar stratospheric ice clouds and dehydration were observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT atmospheric sounding campaign. The observed changes in water vapour were reproduced by the model. Both the observed and simulated decrease of the water vapour in the dehydration layer was up to 1.5 ppm.


2006 ◽  
Vol 24 (6) ◽  
pp. 1511-1521 ◽  
Author(s):  
M. Maturilli ◽  
F. Fierli ◽  
V. Yushkov ◽  
A. Lukyanov ◽  
S. Khaykin ◽  
...  

Abstract. The stratospheric water vapour mixing ratio inside, outside, and at the edge of the polar vortex has been accurately measured by the FLASH-B Lyman-Alpha hygrometer during the LAUTLOS campaign in Sodankylä, Finland, in January and February 2004. The retrieved H2O profiles reveal a detailed view on the Arctic lower stratospheric water vapour distribution, and provide a valuable dataset for the validation of model and satellite data. Analysing the measurements with the semi-lagrangian advection model MIMOSA, water vapour profiles typical for the polar vortex' interior and exterior have been identified, and laminae in the observed profiles have been correlated to filamentary structures in the potential vorticity field. Applying the validated MIMOSA transport scheme to specific humidity fields from operational ECMWF analyses, large discrepancies from the observed profiles arise. Although MIMOSA is able to reproduce weak water vapour filaments and improves the shape of the profiles compared to operational ECMWF analyses, both models reveal a dry bias of about 1 ppmv in the lower stratosphere above 400 K, accounting for a relative difference from the measurements in the order of 20%. The large dry bias in the analysis representation of stratospheric water vapour in the Arctic implies the need for future regular measurements of water vapour in the polar stratosphere to allow the validation and improvement of climate models.


2021 ◽  
pp. 152808372110142
Author(s):  
Ariana Khakpour ◽  
Michael Gibbons ◽  
Sanjeev Chandra

Porous membranes find natural application in various fields and industries. Water condensation on membranes can block pores, reduce vapour transmissibility, and diminish the porous membranes' performance. This research investigates the rate of water vapour transmission through microporous nylon and nanofibrous Gore-Tex membranes. Testing consisted of placing the membrane at the intersection of two chambers with varied initial humidity conditions. One compartment is initially set to a high ([Formula: see text]water vapour concentration and the other low ([Formula: see text], with changes in humidity recorded as a function of time. The impact of pore blockage was explored by pre-wetting the membranes with water or interposing glycerine onto the membrane pores before testing. Pore blockage was measured using image analysis for the nylon membrane. The mass flow rate of water vapour ( ṁv) diffusing through a porous membrane is proportional to both its area (A) and the difference in vapour concentration across its two faces ([Formula: see text], such that [Formula: see text] where K is defined as the moisture diffusion coefficient. Correlations are presented for the variation of K as a function of [Formula: see text]. Liquid contamination on the porous membrane has been shown to reduce the moisture diffusion rate through the membrane due to pore blockage and the subsequent reduced open area available for vapour diffusion. Water evaporation from the membrane's surface was observed to add to the mass of vapour diffusing through the membrane. A model was developed to predict the effect of membrane wetting on vapour diffusion and showed good agreement with experimental data.


2009 ◽  
Vol 9 (13) ◽  
pp. 4407-4417 ◽  
Author(s):  
S. Lossow ◽  
M. Khaplanov ◽  
J. Gumbel ◽  
J. Stegman ◽  
G. Witt ◽  
...  

Abstract. The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E) with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.


2015 ◽  
Vol 15 (17) ◽  
pp. 9945-9963 ◽  
Author(s):  
N. J. Livesey ◽  
M. L. Santee ◽  
G. L. Manney

Abstract. The well-established "Match" approach to quantifying chemical destruction of ozone in the polar lower stratosphere is applied to ozone observations from the Microwave Limb Sounder (MLS) on NASA's Aura spacecraft. Quantification of ozone loss requires distinguishing transport- and chemically induced changes in ozone abundance. This is accomplished in the Match approach by examining cases where trajectories indicate that the same air mass has been observed on multiple occasions. The method was pioneered using ozonesonde observations, for which hundreds of matched ozone observations per winter are typically available. The dense coverage of the MLS measurements, particularly at polar latitudes, allows matches to be made to thousands of observations each day. This study is enabled by recently developed MLS Lagrangian trajectory diagnostic (LTD) support products. Sensitivity studies indicate that the largest influence on the ozone loss estimates are the value of potential vorticity (PV) used to define the edge of the polar vortex (within which matched observations must lie) and the degree to which the PV of an air mass is allowed to vary between matched observations. Applying Match calculations to MLS observations of nitrous oxide, a long-lived tracer whose expected rate of change is negligible on the weekly to monthly timescales considered here, enables quantification of the impact of transport errors on the Match-based ozone loss estimates. Our loss estimates are generally in agreement with previous estimates for selected Arctic winters, though indicating smaller losses than many other studies. Arctic ozone losses are greatest during the 2010/11 winter, as seen in prior studies, with 2.0 ppmv (parts per million by volume) loss estimated at 450 K potential temperature (~ 18 km altitude). As expected, Antarctic winter ozone losses are consistently greater than those for the Arctic, with less interannual variability (e.g., ranging between 2.3 and 3.0 ppmv at 450 K). This study exemplifies the insights into atmospheric processes that can be obtained by applying the Match methodology to a densely sampled observation record such as that from Aura MLS.


2003 ◽  
Vol 3 (2) ◽  
pp. 395-402 ◽  
Author(s):  
J.-U. Grooß ◽  
R. Müller

Abstract. Current stratospheric chemical model simulations underestimate substantially the large ozone loss rates that are derived for the Arctic from ozone sondes for January of some years. Until now, no explanation for this discrepancy has been found. Here, we examine the influence of intrusions of mid-latitude air into the polar vortex on these ozone loss estimates. This study focuses on the winter 1991/92, because during this winter the discrepancy between simulated and experimentally derived ozone loss rates is reported to be the largest. Also during the considered period the vortex was disturbed by a strong warming event with large-scale intrusions of mid-latitude air into the polar vortex, which is quite unusual for this time of the year. The study is based on simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Two methods for determination the ozone loss are investigated, the so-called vortex average approach and the Match method. The simulations for January 1992 show that the intrusions induce a reduction of vortex average ozone mixing ratio corresponding to a systematic offset of the ozone loss rate of about 12 ppb per day. This should be corrected for in the vortex average method. The simulations further suggest, that these intrusions do not cause a significant bias for the Match method due to effective quality control measures in the Match technique.


2002 ◽  
Vol 2 (6) ◽  
pp. 2489-2506
Author(s):  
J.-U. Grooß ◽  
R. Müller

Abstract. Current stratospheric chemical model simulations underestimate substantially the large ozone loss rates that are derived for the Arctic from ozone sondes for January of some years. Until now, no explanation for this discrepancy has been found. Here, we examine the influence of intrusions of mid-latitude air into the polar vortex on these ozone loss estimates. This study focuses on the winter 1991/92. It is based on simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The simulations for January 1992 show that the intrusions induce a reduction of vortex average ozone mixing ratio corresponding to a systematic offset of the ozone loss rate of about 12 ppb per day. Further, the results of the Match method are influenced by the intrusions, since the intruded air masses are deformed and reach dimensions below the Match radius. From our calculations we deduce a systematic offset of the Match ozone loss rate by about 10 ppb/day, which may explain about 28% of the published discrepancy between Match and box model simulations for the winter 1991/92.


2003 ◽  
Vol 3 (4) ◽  
pp. 4393-4410 ◽  
Author(s):  
M. Müller ◽  
R. Neuber ◽  
F. Fierli ◽  
A. Hauchecorne ◽  
H. Vömel ◽  
...  

Abstract. During winter 2002/2003, three balloon-borne frost point hygrometers measured high-resolution profiles of stratospheric water vapour above Ny-Ålesund, Spitsbergen. All measurements reveal a high H2O mixing ratio of about 7 ppmv above 24 km, thus differing significantly from the 5 ppmv that are commonly assumed for the calculation of polar stratospheric cloud existence temperatures. The profiles obtained on 12 December 2002 and on 17 January 2003 provide an insight into the vertical distribution of water vapour in the core of the polar vortex. Unlike the earlier profiles, the water vapour sounding on 11 February 2003 detected the vortex edge region in the lower part of the stratosphere. Here, a striking diminuition in H2O mixing ratio stands out between 16 and 19 km. The according stratospheric temperatures clarify that this dehydration can not be caused by the presence of polar stratospheric clouds or earlier PSC particle sedimentation. On the same day, ozone observations by lidar indicate a large scale movement of the polar vortex, while an ozone sonde measurement even shows laminae in the same altitude range as in the water vapour profile. Tracer lamination in the vortex edge region is caused by filamentation of the vortex. The link between the observed water vapour diminuition and filaments in the vortex edge region is highlighted by results of the MIMOSA contour advection model. In the altitude of interest, adjoined filaments of polar and mid-latitudinal air can be identified above the Spitsbergen region. A vertical cross-section reveals that the water vapour sonde has flown through polar air in the lowest part of the stratosphere. Where the low water vapour mixing ratio was detected, the balloon passed through air from a mid-latitudinal filament from about 425 to 445 K, before it finally entered the polar vortex above 450 K. The MIMOSA model results elucidate the correlation that on 11 February 2003 the frost point hygrometer measured strongly variable water vapour concentrations as the sonde detected air with different origins, respectively. Instead of being linked to dehydration due to PSC particle sedimentation, the local diminuition in the stratospheric water vapour profile of 11 February 2003 has been found to be caused by dynamical processes in the polar stratosphere.


Sign in / Sign up

Export Citation Format

Share Document