scholarly journals Review of 'Air Quality and Climate Change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III), Part II: aerosol radiative effects and aerosol feedbacks' by Meng Gao et al.

2019 ◽  
Author(s):  
Anonymous
2020 ◽  
Vol 20 (2) ◽  
pp. 1147-1161 ◽  
Author(s):  
Meng Gao ◽  
Zhiwei Han ◽  
Zhining Tao ◽  
Jiawei Li ◽  
Jeong-Eon Kang ◽  
...  

Abstract. Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating wintertime haze events in the North China Plain region and evaluates the importance of aerosol radiative feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the participating models. Over the Beijing–Tianjin–Hebei (BTH) region, the ensemble mean of estimated aerosol direct radiative forcing (ADRF) at the top of atmosphere, inside the atmosphere, and at the surface are −1.1, 7.7, and −8.8 W m−2 during January 2010, respectively. Subdivisions of direct and indirect aerosol radiative forcing confirm the dominant role of direct forcing. During severe haze days (17–19 January 2010), the averaged reduction in near-surface temperature for the BTH region can reach 0.3–1.6 ∘C. The responses of wind speeds at 10 m (WS10) inferred from different models show consistent declines in eastern China. For the BTH region, aerosol–radiation feedback-induced daytime changes in PM2.5 concentrations during severe haze days range from 6.0 to 12.9 µg m−3 (<6 %). Sensitivity simulations indicate the important effect of aerosol mixing states on the estimates of ADRF and aerosol feedbacks. Besides, black carbon (BC) exhibits a large contribution to atmospheric heating and feedbacks although it accounts for a small share of mass concentration of PM2.5.


2019 ◽  
Author(s):  
Meng Gao ◽  
Zhiwei Han ◽  
Zhining Tao ◽  
Jiawei Li ◽  
Jeong-Eon Kang ◽  
...  

Abstract. Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the models. Over the Beijing-Tianjin-Hebei (BTH) region, the ensemble mean of aerosol direct radiative forcing (ADRF) at the top of atmosphere, inside the atmosphere and at the surface are −1.9, 8.4 and −10.3 W/m2, respectively. Subdivisions of direct and indirect aerosol radiative forcing confirm the dominant roles of direct forcing. During severe haze days (January 17–19, 2010), the averaged reduction in near surface temperature for the BTH region can reach 0.3–3.0 ºC. The responses of wind speeds at 10 m (WS10) inferred from different models show consistent declines in eastern China. For the BTH region, aerosol-radiation feedback induced changes in PM2.5 range from 6.0 to 8.8 µg/m3 (


2021 ◽  
Author(s):  
Tamanna Subba ◽  
Mukunda M. Gogoi ◽  
K. Krishna Moorthy ◽  
Pradip K. Bhuyan ◽  
Binita Pathak ◽  
...  

2017 ◽  
Author(s):  
Meng Gao ◽  
Zhiwei Han ◽  
Zirui Liu ◽  
Meng Li ◽  
Jinyuan Xin ◽  
...  

Abstract. Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design, including descriptions of participating models and model inputs, the experimental designs, and results of model evaluation, are presented. Two winter months (January 2010 and January 2013) were selected as study periods, when severe haze occurred in North China. Simulations were designed to evaluate radiative and microphysical feedbacks, together and separately, relative to simulations without feedbacks. Six modeling groups from China, Korea and the United States submitted results from seven applications of online coupled chemistry-meteorology models. Results are compared to meteorology and air quality measurements, including the Campaign on Atmospheric Aerosol Research Network of China (CARE-China) network, and the Acid Deposition Monitoring Network in East Asia (EANET). The analysis focuses on model evaluations and aerosol effects on meteorology and air quality, and potentially other interesting topics, such as the impacts of model resolutions on aerosol-radiation-weather interactions. The model evaluations for January 2010 show that current online-coupled meteorology-chemistry model can generally well reproduced meteorological features and variations of major air pollutants, including aerosol concentrations. The correlation coefficients between multi-model ensemble mean and observed near-surface temperature, water vapor mixing ratio and wind speeds can reach as high as 0.99, 0.99 and 0.98. The correlation coefficients between multi-model ensemble mean and the CARE-China observed near-surface air pollutants range from 0.51 to 0.94 (0.51 for ozone and 0.94 for PM2.5). However, large discrepancies exist between simulated aerosol chemical compositions from different models, which is due to different parameterizations of chemical reactions. The coefficient of variation (standard deviation divided by average) can reach above 1.3 for sulfate in Beijing, and above 1.6 for nitrate and organic aerosol in coastal regions, indicating these compositions are less consistent from different models. During clean periods, simulated Aerosol Optical Depths (AOD) from different models are consistent, but peak values differ during severe haze event, which can be explained by the differences in simulated inorganic aerosol concentrations and the hygroscopic growth efficiency (affected by varied RH). These results provide some brief senses of how current online-coupled meteorology-chemistry models reproduce severe haze events, and some directions for future model improvements.


2019 ◽  
Author(s):  
Stefan Kinne

Abstract. onthly global maps for aerosol properties of the MACv2 climatology are applied in an off-line radiative transfer model to determine aerosol radiative effects. For details beyond global averages in most cases global maps are presented to visualize regional and seasonal details. Aside from the direct radiative (aerosol presence) effect, including those for aerosol components as extracted from MACv2 aerosol optics, also the major aerosol indirect radiative effect is covered. Hereby, the impact of smaller drops in water clouds due to added anthropogenic aerosol was simulated by applying a satellite retrieval based fit from locally associations between aerosol and drop concentrations over oceans. Present-day anthropogenic aerosols of MACv2 – on a global average basis – reduce the radiative net-fluxes at the top of the atmosphere (TOA) by −1.0 W/m2 and at the surface by −2.1 W/m2. Direct cooling contributions are only about half of indirect contributions (−.35 vs −.65) at TOA, but about twice at the surface (−1.45 vs −.65), as solar absorption of the direct effect warms the atmosphere by +1.1 W/m2. Natural aerosols are on average less absorbing (for a relatively larger solar TOA cooling) and larger in size (now contributing with IR greenhouse warming). Thus, average TOA direct forcing efficiencies for total and anthropogenic aerosol happen to be similar: −11 W/m2/AOD at all-sky and −24 W/m2/AOD at clear-sky conditions. The present-day direct impact by all soot (BC) is globally averaged +0.55W/m2 and at least half of it should be attributed to anthropogenic sources. Hereby any accuracy of anthropogenic impacts, not just for soot, suffers from the limited access to a pre-industrial reference. Anthropogenic uncertainty has a particular strong impact on aerosol indirect effects, which dominate the (TOA) forcing. Accounting for uncertainties in the anthropogenic definition, present-day aerosol forcing is estimated to stay within the −0.7 to −1.6 W/m2 range, with a best estimate at −1 W/m2. Calculations with model predicted temporal changes to anthropogenic AOD indicate that qualitatively the anthropogenic aerosol forcing has not changed much over the last decades and is not likely to increase over the next decades, despite strong regional shifts. These regional shifts explain most solar insolation (brightening or dimming) trends that have been observed by ground-based radiation data.


Sign in / Sign up

Export Citation Format

Share Document