scholarly journals Supplementary material to "Measurement report: Characterization of uncertainties of fluxes and fuel sulfur content from ship emissions at the Baltic Sea"

Author(s):  
Jari Walden ◽  
Liisa Pirjola ◽  
Tuomas Laurila ◽  
Juha Hatakka ◽  
Heidi Pettersson ◽  
...  
2021 ◽  
Vol 21 (24) ◽  
pp. 18175-18194
Author(s):  
Jari Walden ◽  
Liisa Pirjola ◽  
Tuomas Laurila ◽  
Juha Hatakka ◽  
Heidi Pettersson ◽  
...  

Abstract. Fluxes of gaseous compounds and nanoparticles were studied using micrometeorological methods at Harmaja in the Baltic Sea. The measurement site was situated beside the ship route to and from the city of Helsinki. The gradient (GR) method was used to measure fluxes of SO2, NO, NO2, O3, CO2, and Ntot (the number concentration of nanoparticles). In addition, the flux of CO2 was also measured using the eddy-covariance (EC) method. Distortion of the flow field caused by obstacles around the measurement mast was studied by applying a computation fluid dynamic (CFD) model. This was used to establish the corresponding heights in the undisturbed stream. The wind speed and the turbulent parameters at each of the established heights were then recalculated for the gradient model. The effect of waves on the boundary layer was taken into consideration, as the Monin–Obukhov theory used to calculate the fluxes is not valid in the presence of swell. Uncertainty budgets for the measurement systems were constructed to judge the reliability of the results. No clear fluxes across the air–sea nor the sea–air interface were observed for SO2, NO, NO2, NOx (= NO + NO2), O3, or CO2 using the GR method. A negative flux was observed for Ntot, with a median value of −0.23 × 109 m−2 s−1 and an uncertainty range of 31 %–41 %. For CO2, while both positive and negative fluxes were observed, the median value was −0.081 μmol m−2 s−1 with an uncertainty range of 30 %–60 % for the EC methods. Ship emissions were responsible for the deposition of Ntot, while they had a minor effect on CO2 deposition. The fuel sulfur content (FSC) of the marine fuel used in ships passing the site was determined from the observed ratio of the SO2 and CO2 concentrations. A typical value of 0.40 ± 0.06 % was obtained for the FSC, which is in compliance with the contemporary FSC limit value of 1 % in the Baltic Sea area at the time of measurements. The method to estimate the uncertainty in the FSC was found to be accurate enough for use with the latest regulations, 0.1 % (Baltic Sea area) and 0.5 % (global oceans).


2017 ◽  
Vol 8 (4) ◽  
pp. 901-919 ◽  
Author(s):  
Björn Claremar ◽  
Karin Haglund ◽  
Anna Rutgersson

Abstract. The shipping sector is a significant contributor to emissions of air pollutants in marine and coastal regions. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and concentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogen from the international maritime sector in the Baltic Sea and the North Sea, have been made for the years 2011 to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentration and dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2 concentration and dry deposition of sulfur represented up to 80 % of the total in some regions. WHO guidelines for annual concentrations were not trespassed for any analysed pollutant, other than PM2.5 in the Netherlands, Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km  ×  50 km, there may be higher concentrations locally close to intense shipping lanes. Wet deposition is more spread and less sensitive to model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30 % of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close to shipping lanes showed some underestimations and missed maximums, probably due to resolution of the model and underestimated ship emissions. A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreases the atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, the cleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown. The resulting potential of future acidification in the Baltic Sea, both from atmospheric deposition and from scrubber water along the shipping lanes, based on different assumptions about sulfur content in fuel, scrubber usage, and increased shipping density has been assessed. The increase in deposition for different shipping and scrubber scenarios differs for the basins in the Baltic Sea, with highest potential of acidification in the southern basins with high traffic. The proportion of ocean-acidifying sulfur from ships increases when taking scrubber water into account and the major reason for increasing acidifying nitrogen from ships is increasing ship traffic. Also, with the implementation of emission control for nitrogen, the effect of scrubbers on acidification is evident. This study also generates a database of shipping and scrubber scenarios for atmospheric deposition and scrubber exhaust from the period 2011 to 2050.


2021 ◽  
Author(s):  
Jari Walden ◽  
Liisa Pirjola ◽  
Tuomas Laurila ◽  
Juha Hatakka ◽  
Heidi Pettersson ◽  
...  

Abstract. Deposition of gaseous compounds and nanoparticles from ship emissions was studied by micrometeorological methods at Harmaja in the Baltic Sea. The gradient method was used to measure fluxes of SO2, NO, NO2, O3, CO2, and Ntot (number concentration of nanoparticles). In addition, the fluxes of CO2 were measured by the eddy covariance method. Distortion of the flow field caused by obstacles around the measurement mast was studied by applying a computation fluid dynamic (CFD) model. This was used to establish the corresponding heights in the undisturbed stream, and the wind speed as well as the turbulent parameters at each of the established heights were recalculated for the gradient model. The effect of waves on the boundary layer was taken into consideration, because the Monin–Obukhov theory used to calculate the fluxes is not valid in the presence of swell. Uncertainty budgets for the measurement systems were constructed to judge the reliability of the results. No clear fluxes across the air-sea nor sea-air interface were observed for SO2, NO, NO2, NOx (= NO + NO2) or O3, while a negative flux was observed for Ntot with a median value of −0.23 × 109 m−2 s−1 and an uncertainty range of 31–41 %. For CO2, while both positive and negative fluxes were observed, the median value was −0.0036 mg m−2 s−1 with uncertainty ranges of 25–36 % and 30–60 % for the GR and EC methods, respectively. Ship emissions were responsible for deposition of Ntot while they had a minor effect on CO2 deposition. The fuel sulfur content (FSC) of the marine fuel used in ships passing the site was determined from the observed ratio of SO2 and CO2 concentrations. A typical value of 0.40 ± 0.06 %, was obtained for FSC, which is in compliance with the contemporary FSC limit value of 1 % in the Baltic Sea Area. The method to estimate the uncertainty of FSC was found to be accurate enough for use with the latest regulations, 0.1 % (Baltic Sea Area) and 0.5 % (Global Oceans).


2014 ◽  
Vol 14 (15) ◽  
pp. 21943-21974 ◽  
Author(s):  
J. E. Jonson ◽  
J. P. Jalkanen ◽  
L. Johansson ◽  
M. Gauss ◽  
H. A. C. Denier van der Gon

Abstract. Land-based emissions of air pollutants in Europe have steadily decreased over the past two decades, and this decrease is expected to continue. Within the same time span emissions from shipping have increased, although recently sulphur emissions, and subsequently particle emissions, have decreased in EU ports and in the Baltic Sea and the North Sea, defined as SECAs (Sulphur Emission Control Areas). The maximum allowed sulphur content in marine fuels in EU ports is now 0.1%, as required by the European Union sulphur directive. In the SECAs the maximum fuel content of sulphur is currently 1% (the global average is about 2.4%). This will be reduced to 0.1% from 2015, following the new IMO rules (International Maritime Organisation). In order to assess the effects of ship emissions in and around the Baltic Sea and the North Sea, regional model calculations with the EMEP air pollution model have been made on a 1/4° longitude × 1/8° latitude resolution, using ship emissions in the Baltic Sea and the North Sea that are based on accurate ship positioning data. The effects on depositions and air pollution and the resulting number of years of life lost (YOLL) have been calculated by comparing model calculations with and without ship emissions in the two sea areas. The calculations have been made with emissions representative of 2009 and 2011, i.e. before and after the implementation of stricter controls on sulphur emissions from mid 2010. The calculations with present emissions show that per person, an additional 0.1–0.2 years of life lost is estimated in areas close to the major ship tracks with present emission levels. Comparisons of model calculations with emissions before and after the implementation of stricter emission control on sulphur show a general decrease in calculated particle concentration. At the same time, however, an increase in ship activity has resulted in higher emissions and subsequently air concentrations, in particular of NOx, especially in and around several major ports. Additional model calculations have been made with land based and ship emissions representative of year 2030. Following a decrease in emissions, air quality is expected to improve, and depositions to be reduced. Particles from shipping are expected to decrease as a result of emission controls in the SECAs. Further controls of NOx emissions from shipping are not decided, and calculations are presented with and without such controls.


2014 ◽  
Vol 14 (2) ◽  
pp. 2021-2042 ◽  
Author(s):  
I. Ialongo ◽  
J. Hakkarainen ◽  
N. Hyttinen ◽  
J.-P. Jalkanen ◽  
L. Johansson ◽  
...  

Abstract. Satellite-based data are very important for air quality applications in the Baltic Sea area, because they provide information on air pollution over sea and there where ground-based network and aircraft measurements are not available. Both the emissions from urban sites over land and ships over sea, contribute to the tropospheric NO2 levels. The tropospheric NO2 monitoring at high latitudes using satellite data is challenging because of the reduced light hours in winter and the snow-covered surface, which make the retrieval complex, and because of the reduced signal due to low Sun. This work presents a detailed characterization of the tropospheric NO2 columns focused on part of the Baltic Sea region using the Ozone Monitoring Instrument (OMI) tropospheric NO2 standard product. Previous works have focused on larger seas and lower latitudes. The results showed that, despite the regional area of interest, it is possible to distinguish the signal from the main coastal cities and from the ships by averaging the data over a seasonal time range. The summertime NO2 emission and lifetime values (E = (1.0 ± 0.1) × 1028 molec. and τ = (3.0 ± 0.5) h, respectively) in Helsinki were estimated from the decay of the signal with distance from the city center. The method developed for megacities was successfully applied to a smaller scale source, in both size and intensity (i.e., the city of Helsinki), which is located at high latitudes (∼60° N). The same methodology could be applied to similar scale cities elsewhere, as far as they are relatively isolated from other sources. The transport by the wind plays an important role in the Baltic Sea area. The NO2 spatial distribution is mainly determined by the contribution of strong westerly winds, which dominate the wind patterns during summer. The comparison between the emissions from model calculations and OMI NO2 tropospheric columns confirmed the applicability of satellite data for ship emission monitoring. In particular, both the emission data and the OMI observations showed similar year-to-year variability, with a drop in year 2009, corresponding to the effect of the economical crisis.


Sign in / Sign up

Export Citation Format

Share Document