scholarly journals Investigation of several proxies to estimate sulfuric acid concentration in volcanic plume conditions

2020 ◽  
Author(s):  
Clémence Rose ◽  
Matti P. Rissanen ◽  
Siddharth Iyer ◽  
Jonathan Duplissy ◽  
Chao Yan ◽  
...  

Abstract. Sulfuric acid (H2SO4) is commonly accepted as a key precursor for atmospheric new particle formation (NPF). However, direct measurements of [H2SO4] remain challenging, thus preventing the determination of this important quantity, and, consequently, a complete understanding of its contribution to the NPF process. Several proxies have been developed to bridge the gaps, but their ability to predict [H2SO4] in very specific conditions such as those encountered in volcanic plumes (including in particular high sulphur dioxide mixing ratios) has not been evaluated so far. In this context, the main objective of the present study was to develop new proxies for daytime [H2SO4] in volcanic plume conditions and compare their performance to that of the proxies available in the literature. In specific, the data collected at Maïdo during the OCTAVE 2018 campaign, in the volcanic eruption plume of the Piton de la Fournaise, were first used to derive seven proxies based on the knowledge of sulphur dioxide (SO2) mixing ratio, global radiation, condensation sink (CS) and relative humidity (RH). In three of the seven proxies (F1–F3), all variables were given equal weight in the prediction of [H2SO4], while adjusted powers were allowed for the different variables in the other four proxies (A1–A4). Proxies A1–A4 were overall found to perform better compared to F1–F3, with, in specific, improved predictive ability for [H2SO4] > 2 × 108 cm−3. The CS was observed to play an important role in regulating [H2SO4], while, in contrast, the inclusion of RH did not improve the predictions. A last expression accounting for an additional sink term related to cluster formation, S1, was also tested and showed a very good predictive ability over the whole range of measured [H2SO4]. The newly developed proxies were in a second step further evaluated using airborne measurements performed in the passive degassing plume of Etna during the STRAP 2016 campaign. Increased correlations between observed and predicted [H2SO4] were obtained when the dependence of predicted [H2SO4] over CS was the lowest, and when the dependence over [SO2] was concurrently the highest. The best predictions were finally retrieved by the simple formulation of F2 (in which [SO2] and radiation alone were assumed to explain the variations of [H2SO4] with equal contributions), with a pre factor adapted to the STRAP data. All in all, our results illustrate the fairly good capacity of the proxy available in the literature to describe [H2SO4] in volcanic plume conditions, but highlight at the same time the benefit of the newly developed proxies for the prediction of the highest concentrations ([H2SO4] > 2–3 × 108 cm−3). Also, the contrasting behaviours of the new proxies in the two investigated datasets indicate that in volcanic plumes like in other environments, the relevance of a proxy can be affected by changes in environmental conditions, and that location specific coefficients do logically improve the predictions.

2021 ◽  
Vol 21 (6) ◽  
pp. 4541-4560
Author(s):  
Clémence Rose ◽  
Matti P. Rissanen ◽  
Siddharth Iyer ◽  
Jonathan Duplissy ◽  
Chao Yan ◽  
...  

Abstract. Sulfuric acid (H2SO4) is commonly accepted as a key precursor for atmospheric new particle formation (NPF). However, direct measurements of [H2SO4] remain challenging, thereby preventing the determination of this important quantity, and, consequently, a complete understanding of its contribution to the NPF process. Several proxies have been developed to bridge the gaps, but their ability to predict [H2SO4] under very specific conditions, such as those encountered in volcanic plumes (including, in particular, high sulfur dioxide mixing ratios), has not been evaluated so far. In this context, the main objective of the present study was to develop new proxies for daytime [H2SO4] under volcanic plume conditions and compare their performance to that of the proxies available in the literature. Specifically, the data collected at Maïdo during the OCTAVE (Oxygenated organic Compounds in the Tropical Atmosphere: variability and atmosphere–biosphere Exchanges) 2018 campaign, in the volcanic eruption plume of the Piton de la Fournaise, were first used to derive seven proxies based on knowledge of the sulfur dioxide (SO2) mixing ratio, global radiation, condensation sink (CS) and relative humidity (RH). A specific combination of some or all of these variables was tested in each of the seven proxies. In three of them (F1–F3), all considered variables were given equal weight in the prediction of [H2SO4], whereas adjusted powers were allowed (and determined during the fitting procedure) for the different variables in the other four proxies (A1–A4). Overall, proxies A1–A4 were found to perform better than proxies F1–F3, with, in particular, improved predictive ability for [H2SO4] > 2 × 108 cm−3. The CS was observed to play an important role in regulating [H2SO4], whereas the inclusion of RH did not improve the predictions. A last expression accounting for an additional sink term related to cluster formation, S1, was also tested and showed a very good predictive ability over the whole range of measured [H2SO4]. In a second step, the newly developed proxies were further evaluated using airborne measurements performed in the passive degassing plume of Etna during the STRAP (Synergie Transdisciplinaire pour Répondre aux Aléas liés aux Panaches volcaniques) 2016 campaign. Increased correlations between observed and predicted [H2SO4] were obtained when the dependence of predicted [H2SO4] on the CS was the lowest and when the dependence on [SO2] was concurrently the highest. The best predictions were finally retrieved by the simple formulation of F2 (in which [SO2] and radiation alone were assumed to explain the variations in [H2SO4] with equal contributions), with a pre-factor adapted to the STRAP data. All in all, our results illustrate the fairly good capacity of the proxies available in the literature to describe [H2SO4] under volcanic plume conditions, but they concurrently highlight the benefit of the newly developed proxies for the prediction of the highest concentrations ([H2SO4] > 2–3 × 108 cm−3). Moreover, the contrasting behaviours of the new proxies in the two investigated datasets indicate that in volcanic plumes, like in other environments, the relevance of a proxy can be affected by changes in environmental conditions and that location-specific coefficients do logically improve the predictions.


2015 ◽  
Vol 15 (15) ◽  
pp. 8643-8656 ◽  
Author(s):  
L. Zhou ◽  
R. Gierens ◽  
A. Sogachev ◽  
D. Mogensen ◽  
J. Ortega ◽  
...  

Abstract. New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Bio–hydro–atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen – Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.


JOM ◽  
2020 ◽  
Author(s):  
Joona Rajahalme ◽  
Siiri Perämäki ◽  
Roshan Budhathoki ◽  
Ari Väisänen

AbstractThis study presents an optimized leaching and electrowinning process for the recovery of copper from waste printed circuit boards including studies of chemical consumption and recirculation of leachate. Optimization of leaching was performed using response surface methodology in diluted sulfuric acid and hydrogen peroxide media. Optimum leaching conditions for copper were found by using 3.6 mol L−1 sulfuric acid, 6 vol.% hydrogen peroxide, pulp density of 75 g L−1 with 186 min leaching time at 20°C resulting in complete leaching of copper followed by over 92% recovery and purity of 99.9% in the electrowinning. Study of chemical consumption showed total decomposition of hydrogen peroxide during leaching, while changes in sulfuric acid concentration were minor. During recirculation of the leachate with up to 5 cycles, copper recovery and product purity remained at high levels while acid consumption was reduced by 60%.


2021 ◽  
Vol 6 (1) ◽  
pp. 156-164
Author(s):  
Jessica E. Guzmán-Pérez ◽  
◽  
Oscar J. Salinas-Luna ◽  
Ernesto Favela-Torres ◽  
Nohemi López-Ramírez ◽  
...  

Water hyacinth (Eichhornia crassipes) is considered a pernicious herb in many parts of the world due to its rapid growth. However, for its high content of cellulose and hemicellulose, it could be considered as raw material to produce fermentable sugars. In this work, the effect of sulfuric acid concentration by thermochemical pretreatment and enzymatic hydrolysis on the release of sugars from water hyacinth was evaluated. Initially, the effect of the sulfuric acid concentration from 1.5 to 9% at 120 ºC was evaluated. With 1.5%, the release of reducing sugars was 160 milligrams of reducing sugars per gram of dry matter (mg red-sug/g dm). After the thermochemical pretreatment, the enzymatic hydrolysis with the cellulase complex (NS22086) allowed obtaining a reducing sugars concentration up to 317 mg red-sug/g dm. These thermochemical and enzymatic approaches to recover reducing sugars from water hyacinth is promising and should be evaluated for bioprocess using reducing sugars as the main source of carbon, such as bioethanol production.


2015 ◽  
Vol 57 ◽  
Author(s):  
Massimo Aranzulla ◽  
Flavio Cannavò ◽  
Simona Scollo

<p>The detection of volcanic plumes produced during explosive eruptions is important to improve our understanding on dispersal processes and reduce risks to aviation operations. The ability of Global Position-ing System (GPS) to retrieve volcanic plumes is one of the new challenges of the last years in volcanic plume detection. In this work, we analyze the Signal to Noise Ratio (SNR) data from 21 permanent stations of the GPS network of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, that are located on the Mt. Etna (Italy) flanks. Being one of the most explosive events since 2011, the eruption of November 23, 2013 was chosen as a test-case. Results show some variations in the SNR data that can be correlated with the presence of an ash-laden plume in the atmosphere. Benefits and limitations of the method are highlighted.</p>


Sign in / Sign up

Export Citation Format

Share Document