scholarly journals Measurement report: Fast photochemical production of peroxyacetyl nitrate (PAN) over the rural North China Plain during cold-season haze events

2021 ◽  
Author(s):  
Yulu Qiu ◽  
Zhiqiang Ma ◽  
Ke Li ◽  
Mengyu Huang ◽  
Jiujiang Sheng ◽  
...  

Abstract. Photochemical pollution over the North China Plain (NCP) are attracting considerable concern. Peroxyacetyl nitrate (PAN) is usually viewed as the second most important photochemical pollutant featuring high mixing ratios during warm seasons. Our observations at a background site in the NCP identified high PAN concentrations even during cold-season haze events. The abrupt increasing rates of PAN by 244 % and 178 % over the morning hours (8:00–12:00) on 10/20 and 10/25, 2020 were 10.6 and 7.7 times those on clean days. The pollution days were characterized by higher temperature and humidity, accompanied by anomalous southerlies. Enhanced local photochemistry has been identified as the dominant factor that controls PAN increase in the morning at the rural site, as the time when prevailing wind turned to southerlies was too late to facilitate direct transport of PAN from the polluted urban region. By removing the effect of direct transport of PAN, we provide a quantitative assessment of net PAN chemical production rate of 0.45 ppb h−1 on the polluted morning, also demonstrating the strong local photochemistry. Using observations and calculated photolysis rates, we find that oxidation of acetaldehyde by hydroxyl radical (OH) is the primary pathway of peroxyacetyl radical formation at the rural site. Acetaldehyde concentrations and production rates of HOx (HOx = OH + HO2) radical on pollution days were 2.8 and 2 times that on clean days, respectively, leading to the abrupt increase of PAN in the morning. Formaldehyde (HCHO) photolysis dominates the daytime HOx production thus contributing to fast photochemistry of PAN. Our observational results fully explain the cause of rapid increase of PAN during cold days at a rural site of the NCP, as well as provide the evidence of important role of HCHO photolysis in secondary pollutants at lower nitrogen oxide emissions. This highlights the imperative to implement strict volatile organic compounds controls out of summer seasons over the NCP.

2021 ◽  
Vol 21 (23) ◽  
pp. 17995-18010
Author(s):  
Yulu Qiu ◽  
Zhiqiang Ma ◽  
Ke Li ◽  
Mengyu Huang ◽  
Jiujiang Sheng ◽  
...  

Abstract. Photochemical pollution over the North China Plain (NCP) is attracting much concern. We usually view peroxyacetyl nitrate (PAN) as the second most important photochemical pollutant featuring high mixing ratios during warm seasons. Our observations at a background site in the NCP identified high PAN concentrations, even during haze events in autumn. The substantial increasing ratios of PAN, by 244 % and 178 %, over the morning hours (08:00–12:00 local time) on 20 and 25 October 2020 were 10.6 and 7.7 times larger than those on clean days. Polluted days are characterized by higher temperature, higher humidity, and anomalous southerly winds compared with clean days. Enhanced local photochemistry has been identified as being the dominant factor that controls the PAN increase in the morning at the rural site, as the time when prevailing wind turns to a southerly wind is too late to promote direct transport of PAN from the polluted urban region. By removing the effect of direct transport of PAN, we provide a quantitative assessment of net PAN chemical production rate of 0.45 ppb h−1 for the mornings of polluted days, also demonstrating the strong local photochemistry. Using observations and calculated photolysis rates, we find that acetaldehyde oxidation by hydroxyl radical (OH) is the primary pathway of peroxyacetyl radical formation at the rural site. Acetaldehyde concentrations and production rates of HOx (HOx= OH + HO2) on polluted days are 2.8 and 2 times as large as those on clean days, leading to a remarkable increase in PAN in the morning. Formaldehyde (HCHO) photolysis dominates the daytime HOx production, thus contributing to fast photochemistry of PAN. Our observational results suggest the cause of a rapid increase in PAN during haze events in autumn at a rural site of the NCP and provide evidence of important role of HCHO photolysis in secondary pollutants at lower nitrogen oxide emissions. This highlights the urgency of carrying out strict volatile organic compound controls over the NCP during the cold season and not just in summer.


2008 ◽  
Vol 8 (21) ◽  
pp. 6355-6363 ◽  
Author(s):  
Y. Wang ◽  
M. B. McElroy ◽  
J. W. Munger ◽  
J. Hao ◽  
H. Ma ◽  
...  

Abstract. Large intra-season differences in mixing ratios of CO and O3 were detected at Miyun, a rural site north of Beijing, in summer 2006. Despite an increase in mean daytime mixing ratio of CO from 500 ppbv in June to 700 ppbv in July, mean daytime O3 dropped from 67 ppbv in June to 50 ppbv in July and August. The observed changes in CO and O3 are attributed to the influence of the summer monsoonal circulation that develops over the North China Plain in July. Photochemical production of O3 is reduced as a consequence of increased cloudiness during July and August, as indicated by the strong negative correlation observed between O3 and satellite observations of cloud optical depth, with cloudiness having little effect on CO. The analysis suggests a strategy for emission controls that could be implemented in an economically efficient manner to minimize the frequency of high levels of O3 during summer in Beijing.


2016 ◽  
Author(s):  
Zhaofeng Tan ◽  
Hendrik Fuchs ◽  
Keding Lu ◽  
Birger Bohn ◽  
Sebastian Broch ◽  
...  

Abstract. A comprehensive field campaign was carried out in summer 2014 in Wangdu located in the North China Plain. A month of continuous OH, HO2 and RO2 measurements were achieved. Observations of radicals by laser induced fluorescence (LIF) technique gave daily maximum concentrations between (5–15) × 106 cm−3, (3–14) × 108 cm−3 and (3–15) × 108 cm−3 for OH, HO2 and RO2, respectively. Measured OH reactivities (inverse OH lifetimes) were 10 to 20 s−1 during daytime. A chemical box model constrained by trace-gas observations and based on a state-of-the-art chemical mechanism is used to interpret the observed radical concentrations. In general, the model can reasonably well reproduce measured radical concentrations during daytime. Like in previous field campaigns in China, modelled and measured OH concentrations agree for NO mixing ratios higher than 1 ppbv, but systematic discrepancies are observed in the afternoon for NO mixing ratios of less than 300 pptv (the model-measurement ratio is between 1.4 to 2 in this case). If additional OH recycling equivalent to 100 pptv NO is assumed, the model is also capable of reproducing the observed OH concentrations for conditions of high VOC and low NOx concentrations with good agreement in HO2 and RO2. Observed RO2 concentrations are underestimated in the morning hours by a factor of 3 to 5. This indicates that an additional chemical source of RO2 is missing in the model. The OH reactivity is also underpredicted in the early morning. Increasing VOC concentrations to match measured OH reactivity helps to reduce the discrepancy between modelled and measured RO2. The underprediction of RO2 coincides with high NO concentrations and therefore leads to a significant underestimation of the local ozone production rates determined from the peroxy radical (HO2 and RO2) reactions with NO. The underestimation corresponds to a daily integral ozone production of about 20 ppbv per day.


2017 ◽  
Vol 17 (1) ◽  
pp. 663-690 ◽  
Author(s):  
Zhaofeng Tan ◽  
Hendrik Fuchs ◽  
Keding Lu ◽  
Andreas Hofzumahaus ◽  
Birger Bohn ◽  
...  

Abstract. A comprehensive field campaign was carried out in summer 2014 in Wangdu, located in the North China Plain. A month of continuous OH, HO2 and RO2 measurements was achieved. Observations of radicals by the laser-induced fluorescence (LIF) technique revealed daily maximum concentrations between (5–15)  × 106 cm−3, (3–14)  × 108 cm−3 and (3–15)  × 108 cm−3 for OH, HO2 and RO2, respectively. Measured OH reactivities (inverse OH lifetime) were 10 to 20 s−1 during daytime. The chemical box model RACM 2, including the Leuven isoprene mechanism (LIM), was used to interpret the observed radical concentrations. As in previous field campaigns in China, modeled and measured OH concentrations agree for NO mixing ratios higher than 1 ppbv, but systematic discrepancies are observed in the afternoon for NO mixing ratios of less than 300 pptv (the model–measurement ratio is between 1.4 and 2 in this case). If additional OH recycling equivalent to 100 pptv NO is assumed, the model is capable of reproducing the observed OH, HO2 and RO2 concentrations for conditions of high volatile organic compound (VOC) and low NOx concentrations. For HO2, good agreement is found between modeled and observed concentrations during day and night. In the case of RO2, the agreement between model calculations and measurements is good in the late afternoon when NO concentrations are below 0.3 ppbv. A significant model underprediction of RO2 by a factor of 3 to 5 is found in the morning at NO concentrations higher than 1 ppbv, which can be explained by a missing RO2 source of 2 ppbv h−1. As a consequence, the model underpredicts the photochemical net ozone production by 20 ppbv per day, which is a significant portion of the daily integrated ozone production (110 ppbv) derived from the measured HO2 and RO2. The additional RO2 production from the photolysis of ClNO2 and missing reactivity can explain about 10 % and 20 % of the discrepancy, respectively. The underprediction of the photochemical ozone production at high NOx found in this study is consistent with the results from other field campaigns in urban environments, which underlines the need for better understanding of the peroxy radical chemistry for high NOx conditions.


2021 ◽  
Author(s):  
Yaqing Zhou ◽  
Nan Ma ◽  
Zhibin Wang ◽  
Jiangchuan Tao ◽  
Juan Hong ◽  
...  

<p>Effective density is one of the most important physical properties of atmospheric aerosol particles, and is linked to particle formation and aging process. Combined characterization of aerosol density, chemical composition, emission and aging processes may provide crucial information for better understanding their interactions and effects on environment and climate. In autumn of 2019, the effective density of sub-micrometer aerosol particles was measured in-situ at a heavily polluted rural site in the North China Plain (NCP). A tandem technique coupling a Centrifugal Particle Mass Analyzer (CPMA) with a differential mobility analyzer (DMA) and a Condensation Particle Counter (CPC) were used to determine the effective density of ambient aerosol particles with diameters of 50, 100, 150, 220 and 300 nm. The probability distribution of effective density exhibits double peak modes in majority cases, with a higher density mode (main-density) and a lower density mode (sub-density). The existence of sub-density particles normally ascribed to freshly emitted or partial aged black carbon (BC) with non-spherical morphology. The number fraction of sub-density mode varies from 4% to 67%, with mean of 22-27% at five particle sizes. Due to the higher aging degree of larger particles, the main-density exhibits an evident ascending trend with particle size. However, the sub-density decreases as mobility size increases, from 0.89 g/cm<sup>3</sup> at 50 nm to 0.62 g/cm<sup>3</sup> at 300 nm, since larger fresh soot particles usually present a more agglomerated morphology than small particles. A comparison was carried out between the mean effective density at 300 nm and ACSM-derived density using different approximations of BC density. The best agreement is achieved when assuming a BC density of 0.6 g/cm<sup>3</sup>, indicating that BC typically exists as non-spherical particles with fractal-like or porous morphology in the NCP in cold season.</p>


Author(s):  
Wanyun Xu ◽  
Gen Zhang ◽  
Ying Wang ◽  
Shengrui Tong ◽  
Wenqian Zhang ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1037
Author(s):  
Siyang Cheng ◽  
Junli Jin ◽  
Jianzhong Ma ◽  
Xiaobin Xu ◽  
Liang Ran ◽  
...  

Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed during the summer (13 June–20 August) of 2014 at a rural site in North China Plain. The vertical profiles of aerosol extinction (AE) in the lower troposphere were retrieved to analyze the temporal variations of AE profiles, near-surface AE, and aerosol optical depth (AOD). The average AOD and near-surface AE over the period of study were 0.51 ± 0.26 and 0.33 ± 0.18 km−1 during the effective observation period, respectively. High AE events and elevated AE layers were identified based on the time series of hourly AE profiles, near-surface AEs and AODs. It is found that in addition to the planetary boundary layer height (PBLH) and relative humidity (RH), the variations in the wind field have large impacts on the near-surface AE, AOD, and AE profile. Among 16 wind sectors, higher AOD or AE occur mostly in the directions of the cities upstream. The diurnal variations of the AE profiles, AODs and near-surface AEs are significant and influenced mainly by the source emissions, PBLH, and RH. The AE profile shape from MAX-DOAS measurement is generally in agreement with that from light detection and ranging (lidar) observations, although the AE absolute levels are different. Overall, ground-based MAX-DOAS can serve as a supplement to measure the AE vertical profiles in the lower troposphere.


2019 ◽  
Vol 19 (20) ◽  
pp. 12857-12874 ◽  
Author(s):  
Renmin Yuan ◽  
Xiaoye Zhang ◽  
Hao Liu ◽  
Yu Gui ◽  
Bohao Shao ◽  
...  

Abstract. Due to excessive anthropogenic emissions, heavy aerosol pollution episodes (HPEs) often occur during winter in the Beijing–Tianjin–Hebei (BTH) area of the North China Plain. Extensive observational studies have been carried out to understand the causes of HPEs; however, few measurements of vertical aerosol fluxes exist, despite them being the key to understanding vertical aerosol mixing, specifically during weak turbulence stages in HPEs. In the winter of 2016 and the spring of 2017 aerosol vertical mass fluxes were measured by combining large aperture scintillometer (LAS) observations, surface PM2.5 and PM10 mass concentrations, and meteorological observations, including temperature, relative humidity (RH), and visibility, at a rural site in Gucheng (GC), Hebei Province, and an urban site at the Chinese Academy of Meteorological Sciences (CAMS) in Beijing located 100 km to the northeast. These are based on the light propagation theory and surface-layer similarity theory. The near-ground aerosol mass flux was generally lower in winter than in spring and weaker in rural GC than in urban Beijing. This finding provides direct observational evidence for a weakened turbulence intensity and low vertical aerosol fluxes in winter and polluted areas such as GC. The HPEs included a transport stage (TS), an accumulative stage (AS), and a removal stage (RS). During the HPEs from 25 to 31 January 2017, in Beijing, the mean mass flux decreased by 51 % from 0.0049 mg m−2 s−1 in RSs to 0.0024 mg m−2 s−1 in the TSs. During the ASs, the mean mass flux decreased further to 0.00087 mg m−2 s−1, accounting for approximately one-third of the flux in the TSs. A similar reduction from the TSs to ASs was observed in the HPE from 16 to 22 December 2016 in GC. It can be seen that from the TS to the AS, the aerosol vertical turbulent flux decreased, but the aerosol particle concentration within the surface layer increased, and it is inferred that in addition to the contribution of regional transport from upwind areas during the TS, suppression of vertical turbulence mixing confining aerosols to a shallow boundary layer increased accumulation.


Sign in / Sign up

Export Citation Format

Share Document