scholarly journals Aqueous chemical bleaching of 4-nitrophenol brown carbon by hydroxyl radicals; products, mechanism and light absorptivity

2021 ◽  
Author(s):  
Bartłomiej Witkowski ◽  
Priyanka Jain ◽  
Tomasz Gierczak

Abstract. The reaction of hydroxyl radicals (OH) with 4-nitrophenol (4-NP) in the aqueous solution was investigated at pH = 2 and 9. As a result, the molar yield of the phenolic products was measured to be 0.20 ± 0.05 at pH = 2 and 0.40 ± 0.1 at pH = 9. The yield of 4-nitrocatechol (4-NC) was higher at pH = 9; at the same time, a lower number of phenolic products was observed due to the hydrolysis and other irreversible reactions at pH > 7. Mineralization investigated with total organic carbon (TOC) technique showed that after 4-NP was completely consumed approx. 85 % of the organic carbon remained in the aqueous solution. Hence, up to 65 % of the organic carbon that remained in the aqueous solution accounted for the open-ring non-phenolic products. The light absorptivity of the reaction solution between 250 and 600 nm decreased as a result of OH reaction with 4-NP. At the same time, 4-NP solution showed some resistance to chemical bleaching due to the formation of the light-absorbing by-products. This phenomenon effectively prolongs the time-scale of chemical bleaching or 4-NP via reaction with OH by a factor of 3–1.5 at pH 2 and 9, respectively. The experimental data acquired indicated that both photolysis and reaction with OH can be important removal processes of the atmospheric brown-carbon from the aqueous particles containing 4-NP.

1998 ◽  
Vol 38 (4-5) ◽  
pp. 239-245 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
G. Mascolo ◽  
G. Tiravanti ◽  
A. C. Di Pinto ◽  
...  

The effectiveness of ozone treatment for improving the biodegradability of recalcitrant pollutants has been proved by investigating the ozonation reaction of FAST-VIOLET-B (FVB) a bioresistant chemical intermediate of azo-dyes. Laboratory scale experiments have been carried out, at room temperature, by bubbling, for 90 min, ozonated air (9ppmO3/min) into 0.35 1 of an alkaline (pH=11) aqueous solution (50 ppm) of FVB. The experimental results indicate that during the ozonation, even though complete FVB degradation occurs in 10 min, ozone consumption goes on for a further 20 min after which time most degradation reactions are completed. The main ozonation by-products, identified by HPLC, IC, and GC-MS are formaldehyde, acetaldehyde, glyoxal, acetone, acetic-, formic-, oxalic- and carbonic-acid, plus six FVB derivatives scarcely biodegradable. At the end of the ozonation, i.e. after 30 min., the initial values of TOC (35 mgC/l) and COD (103 mgO2/l) are respectively 27 and 25 and correspond to a relative removal of about 23% and 76%. As for FVB solution biodegradability expressed as (BOD5)/(COD) ratio, during the first 10 min its value regularly increases from zero up to a maximum of 0.75 that corresponds to an ozone consumption of 2.4 mg per each mg of organic carbon initially present in the solution.


2007 ◽  
Vol 7 (3) ◽  
pp. 139-144
Author(s):  
V.Z. Cukic ◽  
V.L. Knezic

The reduction of organic content through transformation processes in the Danube aquifer along a studied area, biodegradability of Danube bank filtrate and its enhancement by ozonation have all been examined in a study carried out in order to assess amenability of Danube bank filtrate for bio-filtration. As determined during the study period Dissolved Organic Carbon (DOC) varied from 4.6–6.5 mgC/L and from 2.8–3.7 mgC/L in Danube River and Danube bank filtrate respectively. As determined 11.2% of Danube bank filtrate DOC was bio-degradable. A substantial enhancement of biodegradability has been observed after the application of Ozone dosages ranging from 0.45 to 0.9 mgO3/ mgC. It was concluded that Danube bank filtrate itself is not amenable for bio-filtration but an enhancement of its bio-degradability by ozonation could make bio-filtration a reasonable and economical option for reducing of DOC content to the levels that provide low risk of excessive disinfection by-products formation and prevent bacterial re-growth in distribution networks of cities using Danube bank filtrate as the source water.


2020 ◽  
Vol 55 (2) ◽  
pp. 184-197
Author(s):  
Saeideh Mirzaei ◽  
Beata Gorczyca

Abstract In this study, diffused aeration was applied to remove trihalomethane (THM) compounds from chlorinated, treated water containing high dissolved organic carbon (DOC) of 6.8 ± 1.2 mg/L. Increasing air-to-water volumetric ratio (rA/W) from 16 to 39 enhanced total THM (TTHM) removal from 60 to 70% at 20 °C and from 30 to 50% at 4 °C. Although bromodichloromethane has lower Henry's law constant than chloroform (CF), it was removed by a higher degree than CF in some aeration trials. Albeit obtaining high removals in aeration, TTHM reformed, and their concentration surpassed the Canadian guideline of 100 ppb in about 24 hours at 20 °C and 40 hours at 10 °C in all attempted air-to-water ratios. The water age in the system investigated in this study varied from 48 hours in midpoint chlorine boosting stations to 336 hours in the nearest endpoint. This study showed that THM removal by aeration is not a viable solution to control the concentration of these disinfection by-products in high-DOC treated water and in distribution systems where water age exceeds 24 hours; unless, it is going to be installed at the distribution endpoints.


1996 ◽  
Vol 33 (2) ◽  
pp. 149-156
Author(s):  
P. Kölbener ◽  
A. Ritter ◽  
F Corradini ◽  
U. Baumann ◽  
A. M. Cook

2005 ◽  
pp. 239-246 ◽  
Author(s):  
Sladjana Savatovic ◽  
Sonja Djilas ◽  
Vesna Tumbas ◽  
Jasna Canadanovic-Brunet ◽  
Gordana Cetkovic

Different concentrations ofmethanol aqueous solution with or without 0.5% acetic acid and 80% acetone were used to achieve the highest yield of extraction of phenolics from Induna apple pomace. The highest content of phenolics (6.38 mg/g) was detected in the 80% methanol extract. The influence of 80% methanol extract of Induna apple pomace on stable l,l-diphenyl-2-picrylhydrazyl (DPPH) and reactive hydroxyl radicals has been investigated by electron spin resonance (ESR) spectroscopy. Based on the obtained results it can be concluded that the investigated extract is more effective in the DPPH test than on the DMPO-OH scavenging. In both cases antioxidant activity increased with increasing concentration of the investigated extract. The high contents ofphenolics (6.38 mg/g), flavonoids (1.01 mg/g) and flavan-3-ols (0.70 mg/g) in 80% methanol extract indicated that these compounds contributed to the antioxidant activity of Induna apple pomace.


2018 ◽  
Author(s):  
Richie Kaur ◽  
Jacqueline R. Labins ◽  
Scarlett S. Helbock ◽  
Wenqing Jiang ◽  
Keith Bein ◽  
...  

Abstract. While photooxidants are important in atmospheric condensed phases, there are very few measurements in particulate matter (PM). Here we measure light absorption and the concentrations of three photooxidants – hydroxyl radical (•OH), singlet molecular oxygen (1O2*) and oxidizing triplet excited states of organic matter (3C*) – in illuminated aqueous extracts of wintertime particles from Davis, California. 1O2* and 3C*, which are formed from photoexcitation of brown carbon (BrC), have not been previously measured in PM. In the extracts, mass absorption coefficients for dissolved organic compounds (MACDOC) at 300 nm range between 13,000–30,000 cm2 g–C–1 and are approximately twice as high as previous values in Davis fogs. The average (± 1σ) •OH steady-state concentration in particle extracts is 4.7 (± 1.9) × 10−16 M, which is very similar to previous values in fog, cloud and rain: although our particle extracts are more concentrated, the resulting enhancement in the rate of •OH photoproduction is essentially cancelled out by a corresponding enhancement in concentrations of natural sinks for •OH. In contrast, concentrations of the two oxidants formed primarily from brown carbon (i.e., 1O2* and 3C*) are both enhanced in the particle extracts compared to Davis fogs, a result of higher concentrations of dissolved organic carbon and faster rates of light absorption in the extracts. The average 1O2* concentration in the PM extracts is 1.6 (± 0.5) × 10−12 M, seven times higher than past fog measurements, while the average concentration of oxidizing triplets is 1.0 (± 0.4) × 10−13 M, nearly double the average Davis fog value. Additionally, the rates of 1O2* and 3C* photoproduction are both well correlated with the rate of sunlight absorption. While concentrations of 1O2* and 3C* are higher in our PM extracts compared to fog, the extracts are approximately 1000 times more dilute than water-containing ambient PM. Since we cannot experimentally measure photooxidants under these ambient conditions, we measured the effect of PM dilution on oxidant concentrations and then extrapolated to ambient particle conditions. As the particle mass concentration in the extracts increases, measured concentrations of •OH remain relatively unchanged, 1O2* increases linearly, and 3C* concentrations increase less than linearly, likely due to quenching by dissolved organics. Based on our measurements, and accounting for additional sources and sinks that should be important under PM conditions, we estimate that [•OH] in particles is essentially the same as in fog waters, [3C*] is higher in PM by nearly a factor of 3, and [1O2*] is enhanced by a factor of roughly 600. Because of these enhancements in 1O2* and 3C* concentrations, the lifetimes of some highly soluble organics appear to be much shorter in particle liquid water than under foggy/cloudy conditions. Based on our extrapolated rates of formation, BrC-derived singlet molecular oxygen and triplet excited states are the dominant sinks for organic compounds in particle liquid water, with an aggregate rate of reaction for each oxidant that is approximately 200–300 times higher than the aggregate rate of reactions for organics with •OH. For individual, highly soluble reactive organic compounds it appears that 1O2* is the major sink in particle water. Triplet excited states are likely also important in the fate of individual particulate organics, but assessing this requires additional measurements of triplet interactions with dissolved organic carbon in natural samples.


Sign in / Sign up

Export Citation Format

Share Document