scholarly journals Assessing urban methane emissions using column-observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework

2021 ◽  
Vol 21 (17) ◽  
pp. 13131-13147
Author(s):  
Taylor S. Jones ◽  
Jonathan E. Franklin ◽  
Jia Chen ◽  
Florian Dietrich ◽  
Kristian D. Hajny ◽  
...  

Abstract. Cities represent a large and concentrated portion of global greenhouse gas emissions, including methane. Quantifying methane emissions from urban areas is difficult, and inventories made using bottom-up accounting methods often differ greatly from top-down estimates generated from atmospheric observations. Emissions from leaks in natural gas infrastructure are difficult to predict and are therefore poorly constrained in bottom-up inventories. Natural gas infrastructure leaks and emissions from end uses can be spread throughout the city, and this diffuse source can represent a significant fraction of a city's total emissions. We investigated diffuse methane emissions of the city of Indianapolis, USA, during a field campaign in May 2016. A network of five portable solar-tracking Fourier transform infrared (FTIR) spectrometers was deployed throughout the city. These instruments measure the mole fraction of methane in a total column of air, giving them sensitivity to larger areas of the city than in situ sensors at the surface. We present an innovative inversion method to link these total column concentrations to surface fluxes. This method combines a Lagrangian transport model with a Bayesian inversion framework to estimate surface emissions and their uncertainties, together with determining the concentrations of methane in the air flowing into the city. Variations exceeding 10 ppb were observed in the inflowing air on a typical day, which is somewhat larger than the enhancements due to urban emissions (<5 ppb downwind of the city). We found diffuse methane emissions of 73(±22) mol s−1, which is about 50 % of the urban total and 68 % higher than estimated from bottom-up methods, although it is somewhat smaller than estimates from studies using tower and aircraft observations. The measurement and model techniques developed here address many of the challenges present when quantifying urban greenhouse gas emissions and will help in the design of future measurement schemes in other cities.

2021 ◽  
Author(s):  
Taylor S. Jones ◽  
Jonathan E. Franklin ◽  
Jia Chen ◽  
Florian Dietrich ◽  
Kristian D. Hajny ◽  
...  

Abstract. Cities represent a large and concentrated portion of global greenhouse gas emissions, including methane. Quantifying methane emissions from urban areas is difficult, and inventories made using bottom-up accounting methods often differ greatly from top-down estimates generated from atmospheric observations. Emissions from leaks in natural gas infrastructure are difficult to predict, and are therefore poorly constrained in bottom-up inventories. Natural gas infrastructure leaks and emissions from end uses can be spread throughout the city, and this diffuse source can represent a significant fraction of a city's total emissions. We investigated diffuse methane emissions of the city of Indianapolis, USA during a field campaign in May of 2016. A network of five portable solar-tracking Fourier transform infrared (FTIR) spectrometers was deployed throughout the city. These instruments measure the mole fraction of methane in a total column of air, giving them sensitivity to larger areas of the city than in situ sensors at the surface. We present an innovative inversion method to link these total column concentrations to surface fluxes. This method combines a Lagrangian transport model with a Bayesian inversion framework to estimate surface emissions and their uncertainties, together with determining the concentrations of methane in the air flowing into the city. Variations exceeding 10 ppb were observed in the inflowing air on a typical day, somewhat larger than the enhancements due to urban emissions (


2021 ◽  
Vol 2021 (1) ◽  
pp. 4-13
Author(s):  
I.Ch. Leshchenko ◽  

The purpose of this paper is to explore the influence of the new Ukrainian and European regulatory framework for 2019-2020 concerning the decarburization of economy of the functioning of Ukrainian gas industry. The paper provides an overview of the Ukrainian regulatory framework of 2019–2020 on the implementation of the system of monitoring, reporting, and verification of greenhouse gas emissions in our country. We also provide an overview of new European documents on the decarbonisation of economy, in particular, the European Green Deal, the EU Strategy for Reducing Methane Emissions, and the Hydrogen Strategy for Climate-Neutral Europe. We showed that these EU documents will exert a significant influence on the functioning of both the energy sector of our country as a whole and its part – gas industry. The paper shows that, under the existing plans of the development of energy sector in European countries in order to reach the state where there are no net emissions of greenhouse gases by 2050 and under conditions of fierce competition for sources and routes of gas supply to the European market, the most pressing problem confronting the gas transportation system of Ukraine is to optimize its structure with simultaneous replacement of outdated compressor equipment by modern one with lower carbon dioxide emissions, which will require a significant amount of investment. Under such conditions, it is necessary to study carefully the feasibility of introducing activities for the main transportation of gas under the action of Greenhouse Gas Trading System. We also showed that the reduction of methane emissions along the natural gas chain supply in accordance with the EU Strategy for the reduction of methane emissions is extremely important for Ukraine. In addition to the implementation of measures for reducing these emissions, it is necessary to attract attention to the development of national methods for estimating methane emissions and the use of national coefficients in the formation of the National Greenhouse gas emissions inventory for estimating volatile emissions from natural gas activities. Keywords: monitoring, reporting and verification of greenhouse gas emissions, Greenhouse Gas Trading System, decarbonisation, European Green Deal, gas transportation system


2021 ◽  
pp. 129530
Author(s):  
Wally Contreras ◽  
Chris Hardy ◽  
Kaylene Tovar ◽  
Allison M. Piwetz ◽  
Chad R. Harris ◽  
...  

2017 ◽  
Vol 168 ◽  
pp. 36-45 ◽  
Author(s):  
David C. Quiros ◽  
Jeremy Smith ◽  
Arvind Thiruvengadam ◽  
Tao Huai ◽  
Shaohua Hu

2019 ◽  
Vol 01 (02) ◽  
pp. 1950006
Author(s):  
ARSHAD RAZA ◽  
RAOOF GHOLAMI ◽  
MINOU RABIEI ◽  
VAMEGH RASOULI ◽  
REZA REZAEE

Pakistan is ranked in the 7th position among the affected countries by climate changes. Although many studies have been done on the impacts of climate change in Pakistan, little attention has been given to the need for an energy transition and reduction of greenhouse gas emissions in this country. This study highlights the needs of the national energy transition in Pakistan to reduce the greenhouse gas emissions. Considering the fact that natural gas has lower greenhouse gas emission than coal or oil, Pakistan needs to shift its energy system towards natural gas in the near future. Meanwhile, Pakistan government should take key measures and revise energy policies to support such energy transition by making large gas discoveries, increasing energy conversion systems, and implementing renewable and sustainable energies.


2020 ◽  
Vol 10 (20) ◽  
pp. 7112
Author(s):  
Valeria Todeschi ◽  
Guglielmina Mutani ◽  
Lucia Baima ◽  
Marianna Nigra ◽  
Matteo Robiglio

Urban rooftops are a potential source of water, energy, and food that contribute to make cities more resilient and sustainable. The use of smart technologies such as solar panels or cool roofs helps to reach energy and climate targets. This work presents a flexible methodology based on the use of geographical information systems that allow evaluating the potential use of roofs in a densely built-up context, estimating the roof areas that can be renovated or used to produce renewable energy. The methodology was applied to the case study of the city of Turin in Italy, a 3D roof model was designed, some scenarios were investigated, and priorities of interventions were established, taking into account the conditions of the urban landscape. The applicability of smart solutions was conducted as a support to the review of the Building Annex Energy Code of Turin, within the project ‘Re-Coding’, which aimed to update the current building code of the city. In addition, environmental, economic, and social impacts were assessed to identify the more effective energy efficiency measures. In the Turin context, using an insulated green roof, there was energy saving in consumption for heating up to 88 kWh/m2/year and for cooling of 10 kWh/m2/year, with a reduction in greenhouse gas emissions of 193 tCO2eq/MWh/year and 14 tCO2eq/MWh/year, respectively. This approach could be a significant support in the identification and promotion of energy efficiency solutions to exploit also renewable energy resources with low greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document