scholarly journals Evolution of gaseous precursors and meteorological parameters during new particle formation events in the Central European boundary layer

2015 ◽  
Vol 15 (2) ◽  
pp. 2305-2353 ◽  
Author(s):  
J. Größ ◽  
W. Birmili ◽  
A. Hamed ◽  
A. Sonntag ◽  
A. Wiedensohler ◽  
...  

Abstract. This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the diurnal evolution of the meteorological and gas phase parameters involved. Atmospheric aerosol observations include Neutral cluster and Air Ion Spectrometer (NAIS) measurements at the research station Melpitz, East Germany between 2008 and 2011. Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter range 2–20 nm. To study the relationship with gaseous precursors, a proximity measure was calculated for the sulfuric acid concentration on the basis of a one month intensive measurement campaign in May 2008. A major result was that the number concentration of fresh produced neutral particles correlated significantly with the amount of sulfur dioxide available as a main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations, which also represent a recognised precursor of aerosol particle nucleation. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events, and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established with certainty. On the basis of observed diurnal cycles of aerosol, gas phase, and meteorological parameters near the ground, we conclude that particle formation is likely to be induced aloft, rather than near the ground.

2018 ◽  
Vol 18 (3) ◽  
pp. 1835-1861 ◽  
Author(s):  
Johannes Größ ◽  
Amar Hamed ◽  
André Sonntag ◽  
Gerald Spindler ◽  
Hanna Elina Manninen ◽  
...  

Abstract. This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2–20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.


2007 ◽  
Vol 7 (1) ◽  
pp. 211-222 ◽  
Author(s):  
M. Ehn ◽  
T. Petäjä ◽  
H. Aufmhoff ◽  
P. Aalto ◽  
K. Hämeri ◽  
...  

Abstract. The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.


2016 ◽  
Author(s):  
P. Kalkavouras ◽  
E. Bossioli ◽  
S. Bezantakos ◽  
A. Bougiatioti ◽  
N. Kalivitis ◽  
...  

Abstract. We examine the concentration levels and size distribution of submicron aerosol particles along with the concentration of trace gases and meteorological variables over the central (Santorini) and south Aegean Sea (Crete) from 15 to 28 July 2013, a period that includes Etesian events and moderate northern winds. Particle nucleation bursts were recorded during the Etesian flow at both stations, with those observed at Santorini reaching up to 1.5 × 104 particles cm−3. On Crete (at Finokalia station), the fraction of nucleation-mode particles was diminished, but a higher number of Aitken-mode was observed as a result of the downward mixing and photochemistry. Aerosol and photochemical pollutants covaried throughout the measurement period: lower concentrations were observed during the period of strong Etesian flow (e.g. 43–70 ppbv for ozone, 1.5–5.7 μg m−3 for sulfate), but were substantially enhanced during the period of moderate winds (i.e., increase of up to 32 % for ozone, and 140 % for sulfate). To understand how new particle formation (NPF) affects cloud formation, we quantify its impact on the CCN levels and cloud droplet number concentration. We find that NPF can double CCN number (at 0.1 % supersaturation) but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number only by 12 %. Therefore, although NPF events may strongly elevate CCN numbers, the relative impacts on cloud droplet number (compared to pre-event levels) is eventually limited by water vapor availability and depends on the prevailing cloud formation dynamics and the aerosol levels associated with the background in the region.


2015 ◽  
Vol 15 (21) ◽  
pp. 12283-12313 ◽  
Author(s):  
A. Lupascu ◽  
R. Easter ◽  
R. Zaveri ◽  
M. Shrivastava ◽  
M. Pekour ◽  
...  

Abstract. Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4, while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapor parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates are predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary-layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10–40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. We found that newly formed particles could explain up to 20–30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ~ 36 %.


2020 ◽  
Author(s):  
Vitus Besel ◽  
Jakub Kubečka ◽  
Theo Kurtén ◽  
Hanna Vehkamäki

<div> <p>The bulk of aerosol particles in the atmosphere are formed by gas-to-particle nucleation (Merikanto et al., 2009). However, the exact process of single molecules forming cluster, which subsequently can grow into particles, remains largely unknown. Recently, sulfuric acid has been identified to play a key role in this new particle formation enhanced by other compounds such as organic acids (Zhang, 2010) or ammonia (Anttila et al., 2005). To identify the characteristics of cluster formation and nucleation involving sulfuric acid and ammonia in neutral, positive and negative modes, we conducted a computational study. We used a layered approach for configurational sampling of the molecular clusters starting from utilizing a genetic algorithm in order to explore the whole potential energy surface (PES) with all plausible geometrical minima, however, with very unreliable energies. The structures were further optimized with a semi-empirical method and, then, at the ωB97X-D DFT level of theory. After each step, the optimized geometries were filtered to obtain the global minimum configuration. Further, a high level of theory (DLPNO-CCSD(T)) was used for obtaining the electronic energies, in addition to performing DFT frequency analysis, to calculate the Gibbs free energies of formation. These were passed to the Atmospheric Cluster Dynamics Code (ACDC) (McGrath et al., 2012) for studying the evolution of cluster populations. We determined the global minima for the following sulfuric acid - ammonia clusters: (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(NH<sub>3</sub>)<sub>n</sub> with m=n, m=n+1 and n=m+1 for neutral clusters, (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(HSO<sub>4</sub>)<sup>−</sup>(NH<sub>3</sub>)<sub>n</sub> with m=n and n=m+1 for positively charged clusters, and (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(NH<sub>4</sub>)<sup>+</sup>(NH<sub>3</sub>)<sub>n</sub> with m=n and m=n+1 for negatively charged clusters. Further, we present the formation rates, steady state concentrations and fluxes of these clusters calculated using ACDC and discuss how a new configurational sampling procedure, more precise quantum chemistry methods and parameters, such as symmetry and a quasiharmonic approach, impact these ACDC results in comparison to previous studies.</p> </div><div> <p><em>References:<br></em><em>J. Merikanto, D. V. Spracklen, G. W. Mann, S. J. Pickering, and K. S. Carslaw (2009). Atmos. Chem.  Phys., 9, 8601-8616. <br>R. Zhang (2010). Science, 328, 1366-1367. <br>T. Anttila, H. Vehkamäki, I. Napari, M. Kulmala (2005). Boreal Env. Res., 10, 523. <br>M.J. McGrath, T. Olenius, I.K. Ortega, V. Loukonen, P.  Paasonen, T. Kurten, M. Kulmala (2012). Atmos. Chem. Phys., 12, 2355. <br></em></p> </div>


2014 ◽  
Vol 14 (9) ◽  
pp. 13413-13464 ◽  
Author(s):  
S. Schobesberger ◽  
A. Franchin ◽  
F. Bianchi ◽  
L. Rondo ◽  
J. Duplissy ◽  
...  

Abstract. The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from <2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm−3, and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4]<0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn), where n is in the range 4–18 (negatively charged clusters) or 1–17 (positively charged clusters). For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on average by Δm / Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid-base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid-base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that yet unobservable electrically neutral NH3-H2SO4 clusters grow by generally the same mechanism as ionic clusters, particularly for [NH3] / [H2SO4]>10. We expect that NH3-H2SO4 clusters form and grow also mostly by Δm / Δn>1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3-H2SO4 anion clusters during new particle formation in the Finnish boreal forest. However, the exact role of NH3-H2SO4 clusters in boundary layer particle formation remains to be resolved.


2013 ◽  
Vol 13 (24) ◽  
pp. 12495-12506 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
J. Y. Sun ◽  
Z. J. Wu ◽  
D. L. Yue ◽  
...  

Abstract. Long-term measurements of particle number size distributions were carried out both at an urban background site (Peking University, PKU) and a regional Global Atmospheric Watch station (Shangdianzi, SDZ) from March to November in 2008. In total, 52 new particle formation (NPF) events were observed simultaneously at both sites, indicating that this is a regional phenomenon in the North China Plain. On average, the mean condensation sink value before the nucleation events started was 0.025 s−1 in the urban environment, which was 1.6 times higher than that at regional site. However, higher particle formation and growth rates were observed at PKU (10.8 cm−3 s−1 and 5.2 nm h−1) compared with those at SDZ (4.9 cm−3 s−1 and 4.0 nm h−1). These results implied that precursors were much more abundant in the polluted urban environment. Different from the observations in cleaner environments, the background conditions of the observed particle homogeneous nucleation events in the North China Plain could be characterized as the co-existing of a stronger source of precursor gases and a higher condensational sink of pre-existing aerosol particles. Secondary aerosol formation following nucleation events results in an increase of particle mass concentration, particle light scattering coefficient, and cloud condensation nuclei (CCN) number concentration, with consequences on visibility, radiative effects, and air quality. Typical regional NPF events with significant particle nucleation rates and subsequent particle growth over a sufficiently long time period at both sites were chosen to investigate the influence of NPF on the number concentration of "potential" CCN. As a result, the NPF and the subsequent condensable growth increased the CCN number concentration in the North China Plain by factors in the range from 5.6 to 8.7. Moreover, the potential contribution of anthropogenic emissions to the CCN number concentration was more than 50%, to which more attention should be drawn in regional and global climate modeling, especially in the polluted urban areas.


2015 ◽  
Vol 15 (14) ◽  
pp. 19729-19801
Author(s):  
A. Lupascu ◽  
R. Easter ◽  
R. Zaveri ◽  
M. Shrivastava ◽  
M. Pekour ◽  
...  

Abstract. Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4 while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapors parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates were predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10–40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. Differences among the three simulations for the 40–100 nm particle diameter range are mostly associated with the timing of the peak total tendencies that shift the morning increase and afternoon decrease in particle number concentration by up to two hours. We found that newly formed particles could explain up to 20–30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ∼ 36 %.


2015 ◽  
Vol 15 (1) ◽  
pp. 55-78 ◽  
Author(s):  
S. Schobesberger ◽  
A. Franchin ◽  
F. Bianchi ◽  
L. Rondo ◽  
J. Duplissy ◽  
...  

Abstract. The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3–H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm−3 (0.1 to 56 pptv), and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3–H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O–H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3–H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4–18 (negatively charged clusters) or 1–17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid–base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid–base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that electrically neutral NH3–H2SO4 clusters, unobservable in this study, have generally the same composition as ionic clusters for [NH3] / [H2SO4] > 10. We expect that NH3–H2SO4 clusters form and grow also mostly by Δm/Δn > 1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3–H2SO4 anion clusters during new-particle formation in the Finnish boreal forest. However, the exact role of NH3–H2SO4 clusters in boundary layer particle formation remains to be resolved.


Sign in / Sign up

Export Citation Format

Share Document