scholarly journals Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

2015 ◽  
Vol 15 (18) ◽  
pp. 26509-26554 ◽  
Author(s):  
D. K. Deshmukh ◽  
K. Kawamura ◽  
M. Lazaar ◽  
B. Kunwar ◽  
S. K. R. Boreddy

Abstract. Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2–\\C12), ω-oxoacids (ωC2–ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2–C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2–C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65–1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3–4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

2016 ◽  
Vol 16 (8) ◽  
pp. 5263-5282 ◽  
Author(s):  
Dhananjay K. Deshmukh ◽  
Kimitaka Kawamura ◽  
Manuel Lazaar ◽  
Bhagawati Kunwar ◽  
Suresh K. R. Boreddy

Abstract. Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2–C12), ω-oxoacids (ωC2–ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2–C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3−, SO42−, and MSA−). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2–C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65–1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3–4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2–C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r =  0.86–0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r =  0.82–0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r =  0.85–0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.


2015 ◽  
Vol 15 (4) ◽  
pp. 1959-1973 ◽  
Author(s):  
C. Zhu ◽  
K. Kawamura ◽  
B. Kunwar

Abstract. Biomass burning (BB) largely modifies the chemical composition of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, on subtropical Okinawa Island, from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p < 0.001); the latter is another BB tracer. The analyses of air mass trajectories and fire spots demonstrated that the seasonal variations of anhydrosugars are caused by long-range transport of BB emissions from the Asian continent. We found winter maxima of anhydrosugars, which may be associated with open burning and domestic heating and cooking in northern and northeastern China, Mongolia and Russia and with the enhanced westerly winds. The monthly averaged levoglucosan / mannosan ratios were lower (2.1–4.8) in May–June and higher (13.3–13.9) in November–December. The lower values may be associated with softwood burning in northern China, Korea and southwestern Japan whereas the higher values are probably caused by agricultural waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.


2014 ◽  
Vol 14 (18) ◽  
pp. 25581-25616 ◽  
Author(s):  
C. Zhu ◽  
K. Kawamura

Abstract. Biomass burning (BB) largely modifies the chemical compositions of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, subtropical Okinawa Island from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p < 0.001); the latter is another BB tracer. The analyses of air mass trajectories and fire spots demonstrated that the seasonal variations of anhydrsosugsars are caused by a long-range transport of BB emissions from the Asian continent. We found winter maxima of anhydrosugars, which may be associated with open burning and domestic heating and cooking in north and northeast China, Mongolia and Russia and with the enhanced westerly. The monthly averaged levoglucosan/mannosan ratios were lower (2.1–4.8) in May–June and higher (13.3–13.9) in November–December. The lower values may be associated with softwood burning in north China, Korea and southwest Japan whereas the higher values are probably caused by agriculture waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.


2014 ◽  
Vol 14 (21) ◽  
pp. 11571-11585 ◽  
Author(s):  
G. H. Wang ◽  
C. L. Cheng ◽  
Y. Huang ◽  
J. Tao ◽  
Y. Q. Ren ◽  
...  

Abstract. A total suspended particulate (TSP) sample was collected hourly in Xi'an, an inland megacity of China near the Loess Plateau, during a dust storm event of 2013 (9 March 18:00−12 March 10:00 LT), along with a size-resolved aerosol sampling and an online measurement of PM2.5. The TSP and size-resolved samples were determined for elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC) and nitrogen (WSON), inorganic ions and elements to investigate chemistry evolution of dust particles. Hourly concentrations of Cl−, NO3−, SO42−, Na+ and Ca2+ in the TSP samples reached up to 34, 12, 180, 72 and 28 μg m−3, respectively, when dust peak arrived over Xi'an. Chemical compositions of the TSP samples showed that during the whole observation period NH4+ and NO3− were linearly correlated with each other (r2=0.76) with a molar ratio of 1 : 1, while SO42− and Cl− were well correlated with Na+, Ca2+, Mg2+ and K+ (r2 > 0.85). Size distributions of NH4+ and NO3− presented a same pattern, which dominated in the coarse mode (> 2.1 μm) during the event and predominated in the fine mode (< 2.1 μm) during the non-event. SO42− and Cl− also dominated in the coarse mode during the event hours, but both exhibited two equivalent peaks in both the fine and the coarse modes during the non-event, due to the fine-mode accumulations of secondarily produced SO42− and biomass-burning-emitted Cl- and the coarse-mode enrichments of urban soil-derived SO42− and Cl−. Linear fit regression analysis further indicated that SO42− and Cl− in the dust samples possibly exist as Na2SO4, CaSO4 and NaCl, which directly originated from Gobi desert surface soil, while NH4+ and NO3− in the dust samples exist as NH4NO3. We propose a mechanism to explain these observations in which aqueous phase of dust particle surface is formed via uptake of water vapor by hygroscopic salts such as Na2SO4 and NaCl, followed by heterogeneous formation of nitrate on the liquid phase and subsequent absorption of ammonia. Our data indicate that 54 ± 20% and 60 ± 23% of NH4+ and NO3− during the dust period were secondarily produced via this pathway, with the remaining derived from the Gobi desert and Loess Plateau, while SO42− in the event almost entirely originated from the desert regions. Such cases are different from those in the East Asian continental outflow region, where during Asia dust storm events SO42− is secondarily produced and concentrates in sub-micrometer particles as (NH4)2SO4 and/or NH4HSO4. To the best of our knowledge, the current work for the first time revealed an infant state of the East Asian dust ageing process in the regions near the source, which is helpful for researchers to understand the panorama of East Asian dust ageing process from the desert area to the downwind region.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 351 ◽  
Author(s):  
Jinyoung Jung ◽  
Byeol Han ◽  
Blanca Rodriguez ◽  
Yuzo Miyazaki ◽  
Hyun Young Chung ◽  
...  

To estimate dry deposition flux of atmospheric water-soluble nitrogen (N), including ammonium (NH4+), nitrate (NO3−), and water-soluble organic nitrogen (WSON), aerosol samples were collected over the subarctic western North Pacific Ocean in the summer of 2016 aboard the Korean icebreaker IBR/V Araon. During the cruise, concentrations of NH4+, NO3−, and WSON in bulk (fine + coarse) aerosols ranged from 0.768 to 25.3, 0.199 to 5.94, and 0.116 to 14.7 nmol m−3, respectively. Contributions of NH4+, NO3−, and WSON to total water-soluble N represented ~74%, ~17%, and ~9%, respectively. Water-soluble N concentrations showed a strong gradient from the East Asian continent to the subarctic western North Pacific Ocean, indicating that water-soluble N species were mainly derived from anthropogenic or terrestrial sources. During sea fog events, coarse mode NO3− was likely to be scavenged more efficiently by fog droplets than fine mode NO3−; besides, WSON was detected only in fine mode, suggesting that there may have been a significant influence of sea fog on WSON, such as the photochemical conversion of WSON into inorganic N. Mean dry deposition flux for water-soluble total N (6.3 ± 9.4 µmol m−2 d−1) over the subarctic western North Pacific Ocean was estimated to support a minimum carbon uptake of 42 ± 62 µmol C m−2d−1 by using the Redfield C/N ratio of 6.625.


2010 ◽  
Vol 10 (13) ◽  
pp. 5839-5858 ◽  
Author(s):  
S. Agarwal ◽  
S. G. Aggarwal ◽  
K. Okuzawa ◽  
K. Kawamura

Abstract. To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp<1.1, 1.1–2.0, 2.0–3.3, 3.3–7.0, >7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region) on 8–9 August, from China (an anthropogenic source region) on 9–10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10–11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42−, NH4+ and K+) were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl− peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO3− showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m−3) were more abundant than those in the aerosols originating from China (209 ng m−3) and ocean (142 ng m−3), whereas SO42− concentrations were highest in the aerosols from China (mean: 3970 ng m−3) followed by marine- (2950 ng m−3) and biomass burning-influenced (1980 ng m−3) aerosols. Higher loadings of WSOC (2430 ng m−3) and OC (4360 ng m−3) were found in the fine mode, where biomass-burning products such as levoglucosan are abundant. This paper presents a case study of long-range transported aerosols illustrating that biomass burning episodes in the Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.


2015 ◽  
Vol 15 (15) ◽  
pp. 8847-8869 ◽  
Author(s):  
E. F. Mikhailov ◽  
G. N. Mironov ◽  
C. Pöhlker ◽  
X. Chi ◽  
M. L. Krüger ◽  
...  

Abstract. In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained κv,ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (κv &amp;approx; 0.15) and a Colorado mountain forest (κv &amp;approx; 0.16 ). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, κv,p. The obtained κv,p values overestimate the experimental FDHA-KIM-derived κv,ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (> 300 nm) and supermicron aerosol particles possess core–shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10−12 cm2 s−1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall, the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second timescales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.


Sign in / Sign up

Export Citation Format

Share Document