scholarly journals Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

2006 ◽  
Vol 6 (2) ◽  
pp. 2059-2090
Author(s):  
M. R. Beaver ◽  
M. J. Elrod ◽  
R. M. Garland ◽  
M. A. Tolbert

Abstract. Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C3 and C9) on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s) at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

2006 ◽  
Vol 6 (11) ◽  
pp. 3231-3242 ◽  
Author(s):  
M. R. Beaver ◽  
M. J. Elrod ◽  
R. M. Garland ◽  
M. A. Tolbert

Abstract. Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C3 and C9) on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s) at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.


2021 ◽  
Author(s):  
Kunfeng Gao ◽  
Chong-Wen Zhou ◽  
Zamin Kanji

<p>Cirrus clouds have an important influence on the climate since the ice crystal size, concentration and distribution of the clouds determine their radiation properties and effects in the atmosphere. Aviation activities in the high troposphere impact cirrus cloud formation indirectly and significantly, due to aviation contrail evolution and aviation soot particles acting as potential ice nucleating particles (INPs). Soot particles have varying ice nucleation (IN) abilities. In cirrus cloud formation conditions, pore condensation and freezing (PCF) is an important ice formation pathway for soot particles, which requires the particle to have appropriate morphology properties and mesoporous structures. In this study, the morphology and pore size of two kinds of soot were changed by a physical agitation method without any chemical modification. The IN activities of both fresh and agitated soot particles with aggregate sizes, 60, 100, 200 and 400 nm, were tested by the Horizontal Ice Nucleation Chamber (HINC) under mixed phase and cirrus cloud conditions.</p><p>In general, the IN results show clear size dependence for particles with the same agitation degree both tested soot samples at all tested temperatures (<em>T</em>) from 218 K to 243 K with a step of 5 K. In addition, all soot particles do not form ice at <em>T </em>> 235 K (homogeneous nucleation temperature, HNT) but ice nucleation was observed well below homogeneous freezing relative humidity (<em>RH</em>) for <em>T</em> < HNT, suggesting PCF as the dominating mechanism rather than deposition nucleation. Furthermore, there are significant differences between agitated and fresh soot particles for both soot samples studied. We observed that all agitated soot particles reach a higher particle activation fraction (<em>AF</em>) value at the same <em>T</em> and <em>RH</em> condition, compared to the same size fresh soot particles. Moreover, 200 and 400 nm agitated soot particles require much lower ice saturation values to reach <em>AF</em> = 0.001 than their fresh counterparts. The enhanced IN abilities of agitated soot particles are attributed to soot aggregate structure compaction thus increasing mesopore occurrence probability induced by physical agitation. Preliminary evidence obtained from the mass measurements of the single aggregates show that agitated soot particles are more dense than fresh soot particles of the same size. Furthermore, soot aggregate morphology comparisons from HR-TEM (high resolution transmission electron microscopy) images, soot-water interaction ability results from DVS (dynamic vapor sorption) tests and micro-pore size distribution results from argon desorption tests will be used to explain the soot particle IN ability promotion induced by compaction.</p>


2015 ◽  
Vol 15 (24) ◽  
pp. 35719-35752 ◽  
Author(s):  
K. Ignatius ◽  
T. B. Kristensen ◽  
E. Järvinen ◽  
L. Nichman ◽  
C. Fuchs ◽  
...  

Abstract. There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −36.5 and −38.3 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nuclei (IN) budget.


2013 ◽  
Vol 13 (8) ◽  
pp. 22249-22296
Author(s):  
M. Diao ◽  
M. A. Zondlo ◽  
A. J. Heymsfield ◽  
L. M. Avallone ◽  
M. E. Paige ◽  
...  

Abstract. Cirrus clouds have large yet uncertain impacts on the Earth's climate. Ice supersaturation (ISS) – where the relative humidity with respect to ice (RHi) is greater than 100% – is the prerequisite condition of ice nucleation. Here we use 1 Hz (~230 m) in situ aircraft-based observations from 87° N–67° S to analyze the spatial characteristics of ice supersaturated regions (ISSRs). The median length of 1-D horizontal ISSR segments is found to be very small (~1 km), which is two orders of magnitude smaller than previously reported. To understand the conditions of these small scale ISSRs, we compare individual ISSRs with their horizontally adjacent subsaturated surroundings and show that 99% and 73% of the ISSRs are moister and colder, respectively. When quantifying the contributions of water vapor (H2O) and temperature (T) individually, the magnitudes of the differences between the maximum RHi values inside ISSRs (RHimax) and the RHi in subsaturated surroundings are largely derived from the H2O spatial variabilities (by 88%) than from those of T (by 9%). These features hold for both ISSRs with and without ice crystals present. Similar analyses for all RHi horizontal variabilities (including ISS and non-ISS) show strong contributions from H2O variabilities at various T, H2O, pressure (P) and various horizontal scales (~1–100 km). Our results provide a new observational constraint on ISSRs on the microscale (~100 m) and point to the importance of understanding how these fine scale features originate and impact cirrus cloud formation and the RHi field in the upper troposphere (UT).


2014 ◽  
Vol 14 (5) ◽  
pp. 2639-2656 ◽  
Author(s):  
M. Diao ◽  
M. A. Zondlo ◽  
A. J. Heymsfield ◽  
L. M. Avallone ◽  
M. E. Paige ◽  
...  

Abstract. Cirrus clouds have large yet uncertain impacts on Earth's climate. Ice supersaturation (ISS) – where the relative humidity with respect to ice (RHi) is greater than 100% – is the prerequisite condition of ice nucleation. Here we use 1 Hz (~230 m) in situ, aircraft-based observations from 87° N to 67° S to analyze the spatial characteristics of ice-supersaturated regions (ISSRs). The median length of 1-D horizontal ISSR segments is found to be very small (~1 km), which is 2 orders of magnitude smaller than previously reported. To understand the conditions of these small-scale ISSRs, we compare individual ISSRs with their horizontally adjacent subsaturated surroundings and show that 99% and 73% of the ISSRs are moister and colder, respectively. When quantifying the contributions of water vapor (H2O) and temperature (T) individually, the magnitudes of the differences between the maximum RHi values inside ISSRs (RHimax) and the RHi in subsaturated surroundings are largely derived from the H2O spatial variabilities (by 88%) than from those of T (by 9%). These features hold for both ISSRs with and without ice crystals present. Similar analyses for all RHi horizontal variabilities (including ISS and non-ISS) show strong contributions from H2O variabilities at various T, H2O, pressure (P) and various horizontal scales (~1–100 km). Our results provide a new observational constraint on ISSRs on the microscale (~100 m) and point to the importance of understanding how these fine-scale features originate and impact cirrus cloud formation and the RHi field in the upper troposphere (UT).


2018 ◽  
Author(s):  
Michael Weger ◽  
Bernd Heinold ◽  
Ina Tegen ◽  
Christa Engler ◽  
Patric Seifert ◽  
...  

Abstract. A regional modeling study on the impact of desert dust on cloud formation is presented for a major Saharan dust outbreak over Europe from 2 April to 5 April 2014. The dust event coincided with an extensive and dense cirrus cloud layer, suggesting an influence of dust on atmospheric ice nucleation. Using interactive simulation with the regional dust model COSMO-MUSCAT, we investigate cloud and precipitation representation in the model and test the sensitivity of cloud parameters to dust-cloud and dust-radiation interactions of the simulated dust plume. We evaluate model results with ground-based and space-borne remote sensings of aerosol and cloud properties, as well as the in situ measurements obtained during the ML-CIRRUS aircraft campaign. A run of the model with single-moment bulk microphysics without online dust feedback considerably underestimated cirrus cloud cover over Germany in the comparison with infrared satellite imagery. This was also reflected in simulated upper-tropospheric ice water content (IWC), which accounted only for 20 % of the observed values. The interactive dust simulation with COSMO-MUSCAT, including a two-moment bulk microphysics scheme and dust-cloud as well as dust-radiation feedback, in contrast, led to significant improvements. The modeled cirrus cloud cover and IWC were by at least a factor of two higher in the relevant altitudes compared to the non-interactive model run. We attributed these improvements mainly to enhanced deposition freezing in response to the high mineral dust concentrations. This was corroborated further in a significant decrease in ice particle radii towards more realistic values, as compared to in situ measurements from the ML-CIRRUS aircraft campaign. By testing different empirical ice nucleation parameterizations, we further demonstrate that remaining uncertainties in the ice nucleating properties of mineral dust affect the model performance at least as significantly as to whether including the online representation of the mineral distribution. Dust-radiation interactions played a secondary role for cirrus cloud formation, but contributed to a more realistic representation of precipitation by suppressing moist convection in southern Germany. In addition, a too low specific humidity in the 7 to 10 km altitude range in the boundary conditions was identified as a main reason of misrepresentation of cirrus clouds in this model study.


2021 ◽  
Author(s):  
Kunfeng Gao ◽  
Chong-Wen Zhou ◽  
Eszter J. Barthazy Meier ◽  
Zamin A. Kanji

Abstract. Soot particles are important candidates for ice nucleating particles (INPs) in cirrus cloud formation which is known to exert a warming effect on climate. Bare soot particles, generally hydrophobic and fractal, mainly exist near emission sources. Coated or internally mixed soot particles are more abundant in the atmosphere and have a higher probability to impact cloud formation and climate. However, the ice nucleation ability of coated soot particles is not as well understood as that of freshly produced soot particles. In this study, two samples, a propane (C3H8) flame soot and a commercial carbon black were coated with varying wt % of sulphuric acid (H2SO4). The ratio of coating material mass to the mass of bare soot particle was controlled and progressively increased from less than 5 wt % to over 100 wt %. Both bare and coated soot particle ice nucleation activities were investigated with a continuous flow diffusion chamber operated at mixed-phase and cirrus cloud conditions. The mobility size and mass distribution of size selected soot particles with/without H2SO4 coating were measured by a scanning mobility particle sizer (SMPS) and a centrifugal particle mass analyser (CPMA) running in parallel. The mixing state and morphology of soot particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the evidence for the presence of H2SO4 on coated soot particle surface is shown by Energy Dispersive X-ray spectroscopy (EDX). Our study demonstrates that H2SO4 coatings suppress the ice nucleation activity of soot particles to varying degrees depending on the coating thickness, but in a non-linear fashion. Thin coatings causing pore filling in the soot-aggregate inhibits pore condensation and freezing (PCF). Thick coatings promote particle ice activation via droplet homogeneous freezing. Overall, our findings reveal that H2SO4 coatings will suppress soot particle ice nucleation abilities in the cirrus cloud regime, having implications for the fate of soot particles with respect to cloud formation in the upper troposphere.


2021 ◽  
Author(s):  
Colin Tully ◽  
David Neubauer ◽  
Nadja Omanovic ◽  
Ulrike Lohmann

Abstract. Cirrus cloud thinning (CCT) is a relatively new radiation management proposal to counteract anthropogenic climate warming by targeting Earth’s terrestrial radiation balance. The efficacy of this method was presented in several general circulation model (GCM) studies that showed widely varied radiative responses, originating in part from the differences in the representation of cirrus ice microphysics between the different GCMs. The recent implementation of a new, more physically based ice microphysics scheme (Predicted Particle Properties, P3) that abandons ice hydrometeor size class separation into the ECHAM-HAM GCM, coupled to a new approach for calculating cloud fractions that increases the relative humidity (RH) thresholds for cirrus cloud formation, motivated a reassessment of CCT efficacy. In this study, we first compared CCT sensitivity between the new cloud fraction approach and the original ECHAM-HAM cloud fraction approach. With the P3 scheme and the higher RH thresholds for cirrus cloud formation, we find a significant cooling response of −0.36 Wm−2 only for our simulation with a seeding particle concentration of 1 L−1, due mostly to rapid cloud adjustments. The most notable response is the reduction of the maximum global-mean net top-of-atmosphere (TOA) radiative anomalies from overseeding by more than 50 %, from 9.0 Wm−2 with the original cloud fraction approach, down to 4.3 Wm−2 using the new cloud fraction RH thresholds by avoiding artificial ice-cloud expansion upon ice nucleation. We attribute the large positive TOA anomalies to seeding particles overtaking both homogeneous nucleation and heterogeneous nucleation on mineral dust particles within cirrus clouds to produce more numerous and smaller ice crystals. This effect is amplified by longer ice residence times in clouds due to the more realistic, slower removal of ice via sedimentation in the P3 scheme. In an effort to avoid this overtaking effect of seeding particles, we increased the default critical ice saturation ratio (Si,seed) for ice nucleation on seeding particles from the default value of 1.05 to 1.35 in a second sensitivity test. With the higher Si,seed we eliminate overseeding and are able to produce cooling responses over a broader range of seeding particle concentrations, with the largest cooling of −0.32 Wm−2 for a seeding particle concentration of 10 L−1, which suggests that Si,seed is a key factor to consider for future CCT studies. However, the global-mean TOA anomalies contain high uncertainty. In response, we examined the TOA responses regionally and found that specific regions only show a small potential for targeted CCT, which is partially enhanced by using the larger Si,seed. Finally, in a seasonal analysis of TOA responses to CCT, we find that our results do not support the previous finding that high-latitude wintertime seeding is a feasible strategy to enhance CCT efficacy, as seeding in our model enhances the already positive cirrus longwave cloud radiative effect. Instead, our results show that summertime cooling occurs due to adjustments of lower-lying mixed-phase and liquid clouds. Therefore, we conclude that CCT is unlikely to act as a feasible climate intervention strategy on a global scale, and should be investigated further with higher-resolution studies in potential target regions and with studies dedicated to assessing potentially realistic seeding particle materials.


2018 ◽  
Vol 18 (23) ◽  
pp. 17545-17572 ◽  
Author(s):  
Michael Weger ◽  
Bernd Heinold ◽  
Christa Engler ◽  
Ulrich Schumann ◽  
Axel Seifert ◽  
...  

Abstract. A regional modeling study on the impact of desert dust on cloud formation is presented for a major Saharan dust outbreak over Europe from 2 to 5 April 2014. The dust event coincided with an extensive and dense cirrus cloud layer, suggesting an influence of dust on atmospheric ice nucleation. Using interactive simulation with the regional dust model COSMO-MUSCAT, we investigate cloud and precipitation representation in the model and test the sensitivity of cloud parameters to dust–cloud and dust–radiation interactions of the simulated dust plume. We evaluate model results with ground-based and spaceborne remote sensing measurements of aerosol and cloud properties, as well as the in situ measurements obtained during the ML-CIRRUS aircraft campaign. A run of the model with single-moment bulk microphysics without online dust feedback considerably underestimated cirrus cloud cover over Germany in the comparison with infrared satellite imagery. This was also reflected in simulated upper-tropospheric ice water content (IWC), which accounted for only 20 % of the observed values. The interactive dust simulation with COSMO-MUSCAT, including a two-moment bulk microphysics scheme and dust–cloud as well as dust–radiation feedback, in contrast, led to significant improvements. The modeled cirrus cloud cover and IWC were by at least a factor of 2 higher in the relevant altitudes compared to the noninteractive model run. We attributed these improvements mainly to enhanced deposition freezing in response to the high mineral dust concentrations. This was corroborated further in a significant decrease in ice particle radii towards more realistic values, compared to in situ measurements from the ML-CIRRUS aircraft campaign. By testing different empirical ice nucleation parameterizations, we further demonstrate that remaining uncertainties in the ice-nucleating properties of mineral dust affect the model performance at least as significantly as including the online representation of the mineral dust distribution. Dust–radiation interactions played a secondary role for cirrus cloud formation, but contributed to a more realistic representation of precipitation by suppressing moist convection in southern Germany. In addition, a too-low specific humidity in the 7 to 10 km altitude range in the boundary conditions was identified as one of the main reasons for misrepresentation of cirrus clouds in this model study.


Sign in / Sign up

Export Citation Format

Share Document