scholarly journals Turbulent vertical diffusivity in the sub-tropical stratosphere

2007 ◽  
Vol 7 (3) ◽  
pp. 6603-6629 ◽  
Author(s):  
I. Pisso ◽  
B. Legras

Abstract. Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and parametrized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Center for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We have investigated cases in subtropical latitudes using data from HIBISCUS campaign. Upper bound on the vertical diffusivity is found to be of the order of 0.5 m2 s−1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

2008 ◽  
Vol 8 (3) ◽  
pp. 697-707 ◽  
Author(s):  
I. Pisso ◽  
B. Legras

Abstract. Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s−1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.


2018 ◽  
Vol 18 (4) ◽  
pp. 997-1012 ◽  
Author(s):  
Émilie Bresson ◽  
Philippe Arbogast ◽  
Lotfi Aouf ◽  
Denis Paradis ◽  
Anna Kortcheva ◽  
...  

Abstract. Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).


2017 ◽  
Vol 738 ◽  
pp. 69-78
Author(s):  
Vladimira Michalcova ◽  
Lenka Lausova ◽  
Iveta Skotnicova ◽  
Sergej Kuznetsov

Wind climate influencing wind loads on buildings and other structures, as well as the dispersion of pollutants from various surfaces is essentially determined by small-scale motions and processes occurring in the atmospheric boundary layer (ABL). The physical and thermal properties of the underlying surface, in conjunction with the dynamics and thermodynamics of the lower atmosphere influence the distribution of wind velocity in thermally stratified ABL. Atmospheric turbulence is characterized by a high degree of irregularity, three-dimensionality, diffusivity, dissipation, and a wide range of motion scales. This article describes a change of selected turbulent variables in the surroundings of flow around a thermally loaded object. The problem is solved numerically in Ansys Fluent 13.0 software using LES (Large eddy simulation) models as well as the Transition SST (Shear Stress Transport) model that is able to take into account the difference between high and low turbulence at the interface between the wake behind an obstacle and the free stream. The results are mutually compared and verified with experimental measurements in the wind tunnel.


2009 ◽  
Vol 2 (2) ◽  
pp. 1299-1333
Author(s):  
A. M. Horseman ◽  
A. R. MacKenzie ◽  
M. P. Chipperfield

Abstract. A new modelling tool for the investigation of large-scale behaviour of cirrus clouds has been developed. This combines two existing models, the TOMCAT/SLIMCAT chemistry transport model (nupdate library version 0.80, script mpc346_l) and cirrus parameterisation of Ren and MacKenzie (LACM implementation not versioned). The development process employed a subset of best-practice software engineering and quality assurance processes, selected to be viable for small-scale projects whilst maintaining the same traceability objectives. The application of the software engineering and quality control processes during the development has been shown to be not a great overhead, and their use has been of benefit to the developers as well as the end users of the results. We provide a step-by-step guide to the implementation of traceability tailored to the production of geo-scientific research software, as distinct from commercial and operational software. Our recommendations include: maintaining a living "requirements list"; explicit consideration of unit, integration and acceptance testing; and automated revision/configuration control, including control of analysis tool scripts and programs. Initial testing of the resulting model against satellite and in-situ measurements has been promising. The model produces representative results for both spatial distribution of the frequency of occurrence of cirrus ice, and the drying of air as it moves across the tropical tropopause. The model is now ready for more rigorous quantitative testing, but will require the addition of a vertical wind velocity downscaling scheme to better represent extra-tropical continental cirrus.


2000 ◽  
Vol 18 (11) ◽  
pp. 1467-1481 ◽  
Author(s):  
L. Menut ◽  
R. Vautard ◽  
C. Flamant ◽  
C. Abonnel ◽  
M. Beekmann ◽  
...  

Abstract. The "Étude et Simulation de la QUalité de l'air en Ile de France" (ESQUIF) project is the first integrated project dedicated to the study of the processes leading to air pollution events over the Paris area. The project was carried out over two years (summer 1998 to winter 2000) to document all types of meteorological conditions favourable to air quality degradation, and in particular to photo oxydant formation. The goals of ESQUIF are (1) to improve our understanding of the relevant chemical and dynamical processes and, in turn, improve their parametrizations in numerical models, and (2) to improve and validate existing models dedicated to pollution analysis, scenarios and/or forecasting, by establishing a comprehensive and thorough database. We present the rationale of the ESQUIF project and we describe the experimental set-up. We also report on the first experiments which took place during the summer of 1998 involving surface networks, and remote sensing instruments as well as several aircraft. Focusing on three days of August 1998, the relative contributions of long-range transported and locally-produced ozone to the elevated ozone concentrations observed during this period are discussed and chemistry-transport model preliminary results on this period are compared to measurements.Key words: Atmospheric composition and structure (pollution – urban and regional; troposphere – composition and chemistry) – Meteorology and atmospheric dynamics (mesoscale meteorology)


2010 ◽  
Vol 3 (1) ◽  
pp. 189-203
Author(s):  
A. M. Horseman ◽  
A. R. MacKenzie ◽  
M. P. Chipperfield

Abstract. A new modelling tool for the investigation of large-scale behaviour of cirrus clouds has been developed. This combines two existing models, the TOMCAT/SLIMCAT chemistry transport model (nupdate library version 0.80, script mpc346_l) and cirrus parameterisation of Ren and MacKenzie (LACM implementation not versioned). The development process employed a subset of best-practice software engineering and quality assurance processes, selected to be viable for small-scale projects whilst maintaining the same traceability objectives. The application of the software engineering and quality control processes during the development has been shown to be not a great overhead, and their use has been of benefit to the developers as well as the end users of the results. We provide a step-by-step guide to the implementation of traceability tailored to the production of geo-scientific research software, as distinct from commercial and operational software. Our recommendations include: maintaining a living "requirements list"; explicit consideration of unit, integration and acceptance testing; and automated revision/configuration control, including control of analysis tool scripts and programs. Initial testing of the resulting model against satellite and in-situ measurements has been promising. The model produces representative results for both spatial distribution of the frequency of occurrence of cirrus ice, and the drying of air as it moves across the tropical tropopause. The model is now ready for more rigorous quantitative testing, but will require the addition of a vertical wind velocity downscaling scheme to better represent extra-tropical continental cirrus.


2003 ◽  
Vol 3 (3) ◽  
pp. 521-533 ◽  
Author(s):  
C. Robles González ◽  
M. Schaap ◽  
G. de Leeuw ◽  
P. J. H. Builtjes ◽  
M. van Loon

Abstract. Aerosol optical depths (AOD) and Angström coefficients over Europe were retrieved using data from the ATSR-2 radiometer on board the ESA satellite ERS-2, for August 1997. Taking advantage of the nadir and forward view of the ATSR-2, the dual view algorithm was used over land to eliminate the influence of the surface reflection. Over sea the AOD was retrieved using only the forward observations. Retrieved aerosol optical properties are in good agreement with those from ground-based sunphotometers. The AOD and Angström coefficients together yield information on the column integrated effective aerosol distribution.  Observed regional variations of the AOD and Angström coefficient are related to anthropogenic emissions of aerosol precursors such as SO2 and NOx in the major European industrial and urban areas, and their subsequent transformation into the aerosol phase. The influence of anthropogenic aerosols such as ammonium sulphate and ammonium nitrate on the total AOD is estimated using a regional chemistry transport model. Sulphate is estimated to contribute from 15% in very clean areas to 70% in polluted areas, the contribution of nitrate is between 5% and 25% over most of Europe. This paper shows the great importance of nitrate in summer over The Netherlands.


2003 ◽  
Vol 3 (4) ◽  
pp. 1023-1035 ◽  
Author(s):  
P. Good ◽  
C. Giannakopoulos ◽  
F. M. O’Connor ◽  
S. R. Arnold ◽  
M. de Reus ◽  
...  

Abstract. A technique is demonstrated for estimating atmospheric mixing time-scales from in-situ data, using a Lagrangian model initialised from an Eulerian chemical transport model (CTM). This method is applied to airborne tropospheric CO observations taken during seven flights of the Mediterranean Intensive Oxidant Study (MINOS) campaign, of August 2001. The time-scales derived, correspond to mixing applied at the spatial scale of the CTM grid. They are relevant to the family of hybrid Lagrangian-Eulerian models, which impose Eulerian grid mixing to an underlying Lagrangian model. The method uses the fact that in Lagrangian tracer transport modelling, the mixing spatial and temporal scales are decoupled: the spatial scale is determined by the resolution of the initial tracer field, and the time scale by the trajectory length. The chaotic nature of lower-atmospheric advection results in the continuous generation of smaller spatial scales, a process terminated in the real atmosphere by mixing. Thus, a mix-down lifetime can be estimated by varying trajectory length so that the model reproduces the observed amount of small-scale tracer structure. Selecting a trajectory length is equivalent to choosing a mixing timescale. For the cases studied, the results are very insensitive to CO photochemical change calculated along the trajectories. That is, it was found that if CO was treated as a passive tracer, this did not affect the mix-down timescales derived, since the slow CO photochemistry does not have much influence at small spatial scales. The results presented correspond to full photochemical calculations. The method is most appropriate for relatively homogeneous regions, i.e. it is not too important to account for changes in aircraft altitude or the positioning of stratospheric intrusions, so that small scale structure is easily distinguished. The chosen flights showed a range of mix-down time upper limits: a very short timescale of 1 day for 8 August, due possibly to recent convection or model error, 3 days for 3 August, probably due to recent convective and boundary layer mixing, and 6-9 days for 16, 17, 22a, 22c and 24 August. These numbers refer to a mixing spatial scale of 2.8°, defined here by the resolution of the Eulerian grid from which tracer fields were interpolated to initialise the Lagrangian model. For the flight of 3 August, the observed concentrations result from a complex set of transport histories, and the models are used to interpret the observed structure, while illustrating where more caution is required with this method of estimating mix-down lifetimes.


2012 ◽  
Vol 12 (8) ◽  
pp. 20351-20382
Author(s):  
H. Brenot ◽  
J. Neméghaire ◽  
L. Delobbe ◽  
N. Clerbaux ◽  
M. Van Roozendael

Abstract. This study reports on the exploitation of GNSS for weather forecasts, especially for nowcasting. We focus on GPS observations (post-processing with a time resolution of 15 min) and try to establish typical configurations of the humidity field which characterise convective systems and particularly which supply forerunners of their initiation associated with deep convection. We show the critical role of GNSS horizontal gradients of humidity to detect small scale structures of the troposphere (i.e. convective cells), and then we present our strategy to obtain typical water vapour configurations by GNSS, called "H2O alert". These alerts are based on a dry/wet contrast taking place during a 30 min window before initiation of a convective system. GNSS observations have been assessed for the rainfall event of the 28–29 June 2005 using data from the Belgian dense network (baseline from 5 to 30 km). To validate our GNSS H2O alert, we use the detection of precipitation by C-band weather radar and thermal infrared radiance of the 10.8-μm channel [Ch09] of SEVIRI instrument on METEOSAT Second Generation. Our H2O alert obtains a score of about 80%.


2012 ◽  
Vol 12 (21) ◽  
pp. 10033-10050 ◽  
Author(s):  
E. Saikawa ◽  
M. Rigby ◽  
R. G. Prinn ◽  
S. A. Montzka ◽  
B. R. Miller ◽  
...  

Abstract. HCFC-22 (CHClF2, chlorodifluoromethane) is an ozone-depleting substance (ODS) as well as a significant greenhouse gas (GHG). HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning equipment since the 1960s, and it has also served as a traditional substitute for some chlorofluorocarbons (CFCs) controlled under the Montreal Protocol. A low frequency record on tropospheric HCFC-22 since the late 1970s is available from measurements of the Southern Hemisphere Cape Grim Air Archive (CGAA) and a few Northern Hemisphere air samples (mostly from Trinidad Head) using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. Since the 1990s high-frequency, high-precision, in situ HCFC-22 measurements have been collected at these AGAGE stations. Since 1992, the Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected flasks on a weekly basis from remote sites across the globe and analyzed them for a suite of halocarbons including HCFC-22. Additionally, since 2006 flasks have been collected approximately daily at a number of tower sites across the US and analyzed for halocarbons and other gases at NOAA. All results show an increase in the atmospheric mole fractions of HCFC-22, and recent data show a growth rate of approximately 4% per year, resulting in an increase in the background atmospheric mole fraction by a factor of 1.7 from 1995 to 2009. Using data on HCFC-22 consumption submitted to the United Nations Environment Programme (UNEP), as well as existing bottom-up emission estimates, we first create globally-gridded a priori HCFC-22 emissions over the 15 yr since 1995. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions. Our inversion indicates that the global HCFC-22 emissions have an increasing trend between 1995 and 2009. We further find a surge in HCFC-22 emissions between 2005 and 2009 from developing countries in Asia – the largest emitting region including China and India. Globally, substantial emissions continue despite production and consumption being phased out in developed countries currently.


Sign in / Sign up

Export Citation Format

Share Document