scholarly journals New particle formation from the oxidation of direct emissions of pine seedlings

2009 ◽  
Vol 9 (2) ◽  
pp. 8223-8260 ◽  
Author(s):  
L. Q. Hao ◽  
P. Yli-Pirilä ◽  
P. Tiitta ◽  
S. Romakkaniemi ◽  
P. Vaattovaara ◽  
...  

Abstract. Measurements of particle formation following the gas phase oxidation of volatile organic compounds (VOCs) emitted by Scots pine (Pinus sylvestris L.) seedlings are reported. Particle nucleation and condensational growth both from ozone (O3) and hydroxyl radical (OH) initiated oxidation of pine emissions (about 20–120 ppb) were investigated in a~smog chamber. During experiments, tetramethylethylene (TME) and 2-butanol were added to control the concentrations of O3 and OH. Particle nucleation and condensational growth rates were interpreted with a chemical kinetics model. Scots pine emissions mainly included α-pinene, β-pinene, Δ3-carene, limonene, myrcene, β-phellandrene and isoprene, composing more than 95% of total emissions. Modeled OH concentration in the O3+OH induced experiments was at a level of ~106 molecular cm−3. Our results demonstrate that OH-initiated oxidation of VOCs plays an important role in the nucleation process during the initial new particle formation stage. The highest average nucleation rate of 360 cm−3 s−1 was observed for the OH-dominated nucleation events and the lowest aerosol mean formation rate less than 0.5 cm−3 s−1 for the case with only O3 present as an oxidant. On the other hand, ozonolysis of monoterpenes appears to be much more efficient to the aerosol growth process following nucleation. Higher contributions of more oxygenated products to the SOA mass loadings from OH-dominating oxidation systems were found as compared to the ozonolysis systems. Comparison of mass and volume distributions from the aerosol mass spectrometer and differential mobility analyzer yields estimated effective density of these SOA to be 1.34±0.06 g cm−3 with the OH plus O3 initiated oxidation systems and 1.38±0.03 g cm−3 with the ozonolysis dominated chemistry.

2009 ◽  
Vol 9 (20) ◽  
pp. 8121-8137 ◽  
Author(s):  
L. Q. Hao ◽  
P. Yli-Pirilä ◽  
P. Tiitta ◽  
S. Romakkaniemi ◽  
P. Vaattovaara ◽  
...  

Abstract. Measurements of particle formation following the gas phase oxidation of volatile organic compounds (VOCs) emitted by Scots pine (Pinus sylvestris L.) seedlings are reported. Particle formation and condensational growth both from ozone (O3) and hydroxyl radical (OH) initiated oxidation of pine emissions (about 20-120 ppb) were investigated in a smog chamber. During experiments, tetramethylethylene (TME) and 2-butanol were added to control the concentrations of O3 and OH. Particle formation and condensational growth rates were interpreted with a chemical kinetic model. Scots pine emissions mainly included α-pinene, β-pinene, Δ3-carene, limonene, myrcene and β-phellandrene, composing more than 95% of total emissions. Modeled OH concentrations in the O3- and OH-induced experiments were on the order of ~106 molecules cm−3. Our results demonstrate that OH-initiated oxidation of VOCs plays an important role in the nucleation process during the initial new particle formation stage. The highest average particle formation rate of 360 cm−3 s−1 was observed for the OH-dominated nucleation events and the lowest formation rate of less than 0.5 cm−3 s−1 was observed for the case with only O3 present as an oxidant. In contrast to the particle formation process, ozonolysis of monoterpenes appears to be much more efficient to the aerosol growth process following nucleation. Higher contributions of more oxygenated products to the SOA mass loadings from OH-dominated oxidation systems were found as compared to the ozonolysis systems. Comparison of mass and volume distributions from the aerosol mass spectrometer and differential mobility analyzer yields estimated SOA effective densities of 1.34±0.06 g cm−3 for the OH+O3 oxidation systems and 1.38±0.03 g cm−3 for the O3 dominated chemistry.


2020 ◽  
Author(s):  
Martin Heinritzi ◽  
Lubna Dada ◽  
Mario Simon ◽  
Dominik Stolzenburg ◽  
Andrea C. Wagner ◽  
...  

Abstract. Nucleation of atmospheric vapors produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly-oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapors. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly-oxygenated dimers with 19 or 20 carbon atoms – which drive particle nucleation and early growth – while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C20 and C15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2·) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene/monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C15 dimers contribute to secondary organic aerosol and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH·) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene derived RO2· radicals that reduce C20 formation. RO2· termination emerges as the critical step that determines the HOM distribution and the corresponding nucleation capability. Species that reduce the C20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.


2020 ◽  
Vol 20 (20) ◽  
pp. 11809-11821 ◽  
Author(s):  
Martin Heinritzi ◽  
Lubna Dada ◽  
Mario Simon ◽  
Dominik Stolzenburg ◽  
Andrea C. Wagner ◽  
...  

Abstract. Nucleation of atmospheric vapours produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapours. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly oxygenated dimers with 19 or 20 carbon atoms – which drive particle nucleation and early growth – while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C20 and C15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2⚫) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene ∕ monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C15 dimers contribute to secondary organic aerosol, and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH⚫) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene-derived RO2⚫ radicals that reduce C20 formation. RO2⚫ termination emerges as the critical step that determines the highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Species that reduce the C20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.


2010 ◽  
Vol 10 (3) ◽  
pp. 1071-1091 ◽  
Author(s):  
A. Hamed ◽  
W. Birmili ◽  
J. Joutsensaari ◽  
S. Mikkonen ◽  
A. Asmi ◽  
...  

Abstract. In anthropogenically influenced atmospheres, sulphur dioxide (SO2) is the main precursor of gaseous sulphuric acid (H2SO4), which in turn is a main precursor for atmospheric particle nucleation. As a result of socio-economic changes, East Germany has seen a dramatic decrease in anthropogenic SO2 emissions between 1989 and present, as documented by routine air quality measurements in many locations. We have attempted to evaluate the influence of changing SO2 concentrations on the frequency and intensity of new particle formation (NPF) using two different data sets (1996–1997; 2003–2006) of experimental particle number size distributions (diameter range 3–750 nm) from the atmospheric research station Melpitz near Leipzig, Germany. Between the two periods SO2 concentrations decreased by 65% on average, while the frequency of NPF events dropped by 45%. Meanwhile, the average formation rate of 3 nm particles decreased by 68% on average. The trends were statistically significant and therefore suggest a connection between the availability of anthropogenic SO2 and freshly formed new particles. In contrast to the decrease in new particle formation, we found an increase in the mean growth rate of freshly nucleated particles (+22%), suggesting that particle nucleation and subsequent growth into larger sizes are delineated with respect to their precursor species. Using three basic parameters, the condensation sink for H2SO4, the SO2 concentration, and the global radiation intensity, we were able to define the characteristic range of atmospheric conditions under which particle formation events take place at the Melpitz site. While the decrease in the concentrations and formation rates of the new particles was rather evident, no similar decrease was found with respect to the generation of cloud condensation nuclei (CCN; particle diameter >100 nm) as a result of atmospheric nucleation events. On the contrary, the production of CCN following nucleation events appears to have increased by tens of percents. Our aerosol dynamics model simulations suggest that such an increase can be caused by the increased particle growth rate.


2010 ◽  
Vol 10 (5) ◽  
pp. 11795-11850 ◽  
Author(s):  
P. Paasonen ◽  
T. Nieminen ◽  
E. Asmi ◽  
H. E. Manninen ◽  
T. Petäjä ◽  
...  

Abstract. Sulphuric acid and organic vapours have been identified as the key components in the ubiquitous secondary new particle formation in the atmosphere. In order to assess their relative contribution and spatial variability, we analyzed altogether 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in 2007–2009. We tested models of several different nucleation mechanisms coupling the formation rate of neutral particles (J) with the concentration of sulphuric acid ([H2SO4]) or low-volatility organic vapours ([org]) condensing on sub-4 nm particles, or with a combination of both concentrations. Furthermore, we determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism. The main goal of the study was to identify the mechanism of new particle formation and subsequent growth that minimizes the difference between the modeled and measured nucleation rates. At three out of four measurement sites – Hyytiälä (Finland), Melpitz (Germany) and San Pietro Capofiume (Italy) – the nucleation rate was closely connected to squared sulphuric acid concentration, whereas in Hohenpeissenberg (Germany) the low-volatility organic vapours were observed to be dominant. However, the nucleation rate at the sulphuric acid dominant sites could not be described with sulphuric acid concentration and a single value of the nucleation coefficient, as K in J=K [H2SO4]2, but the coefficients seemed to vary between the sites. This inter-site variation was substantially smaller when the heteromolecular homogenous nucleation between H2SO4 and organic vapours was assumed to take place in addition to homogenous nucleation of H2SO4 alone, i.e. J=KSA1 [H2SO4]2+KSA2 [H2SO4][org]. By adding in this equation a term describing homomolecular organic vapour nucleation, Ks3 [org]2, equally good results were achieved. In general, our results suggest that organic vapours do play a role, not only in the condensational growth of the particles, but as well in the nucleation process, with a site specific degree.


2016 ◽  
Author(s):  
Lubna Dada ◽  
Pauli Paasonen ◽  
Tuomo Nieminen ◽  
Stephany Buenrostro Mazon ◽  
Jenni Kontkanen ◽  
...  

Abstract. New particle formation (NPF) events have been observed all around the world and are known to be a major source of atmospheric aerosol particles. Here we combine 20 years of observations in a boreal forest at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations) in Hyytiälä, Finland, by utilizing previously accumulated knowledge, and by focusing on clear-sky (non-cloudy) conditions. We first investigated the effect of cloudiness on NPF and then compared the NPF event and non-event days during clear-sky conditions. In this comparison we considered, for example, the effects of calculated particle formation rates, condensation sink, trace gas concentrations and various meteorological quantities. The formation rate of 1.5 nm particles was calculated by using proxies for gaseous sulfuric acid and oxidized products of low volatile organic compounds. As expected, our results indicate an increase in the frequency of NPF events under clear-sky conditions. Also, focusing on clearsky conditions enabled us to find a clear separation of many variables related to NPF. For instance, oxidized organic vapors showed higher concentration during the clear-sky NPF event days, whereas the condensation sink (CS) and some trace gases had higher concentrations during the non-event days. The calculated formation rate of 3 nm particles showed a notable difference between the NPF event and non-event days during clear-sky conditions, especially in winter and spring. For spring time, we are able to find a threshold value for the combined values of ambient temperature and CS, above which practically no clear-sky NPF event could be observed. Finally, we present a probability distribution for the frequency of NPF events at a specific CS and temperature.


2016 ◽  
Author(s):  
P. Kalkavouras ◽  
E. Bossioli ◽  
S. Bezantakos ◽  
A. Bougiatioti ◽  
N. Kalivitis ◽  
...  

Abstract. We examine the concentration levels and size distribution of submicron aerosol particles along with the concentration of trace gases and meteorological variables over the central (Santorini) and south Aegean Sea (Crete) from 15 to 28 July 2013, a period that includes Etesian events and moderate northern winds. Particle nucleation bursts were recorded during the Etesian flow at both stations, with those observed at Santorini reaching up to 1.5 × 104 particles cm−3. On Crete (at Finokalia station), the fraction of nucleation-mode particles was diminished, but a higher number of Aitken-mode was observed as a result of the downward mixing and photochemistry. Aerosol and photochemical pollutants covaried throughout the measurement period: lower concentrations were observed during the period of strong Etesian flow (e.g. 43–70 ppbv for ozone, 1.5–5.7 μg m−3 for sulfate), but were substantially enhanced during the period of moderate winds (i.e., increase of up to 32 % for ozone, and 140 % for sulfate). To understand how new particle formation (NPF) affects cloud formation, we quantify its impact on the CCN levels and cloud droplet number concentration. We find that NPF can double CCN number (at 0.1 % supersaturation) but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number only by 12 %. Therefore, although NPF events may strongly elevate CCN numbers, the relative impacts on cloud droplet number (compared to pre-event levels) is eventually limited by water vapor availability and depends on the prevailing cloud formation dynamics and the aerosol levels associated with the background in the region.


2015 ◽  
Vol 15 (21) ◽  
pp. 12283-12313 ◽  
Author(s):  
A. Lupascu ◽  
R. Easter ◽  
R. Zaveri ◽  
M. Shrivastava ◽  
M. Pekour ◽  
...  

Abstract. Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4, while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapor parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates are predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary-layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10–40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. We found that newly formed particles could explain up to 20–30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ~ 36 %.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 79 ◽  
Author(s):  
Tareq Hussein ◽  
Nahid Atashi ◽  
Larisa Sogacheva ◽  
Simo Hakala ◽  
Lubna Dada ◽  
...  

We characterized new particle formation (NPF) events in the urban background of Amman during August 2016–July 2017. The monthly mean of submicron particle number concentration was 1.2 × 104–3.7 × 104 cm−3 (exhibited seasonal, weekly, and diurnal variation). Nucleation mode (10–15 nm) concentration was 0.7 × 103–1.1 × 103 cm−3 during daytime with a sharp peak (1.1 × 103–1.8 × 103 cm−3) around noon. We identified 110 NPF events (≈34% of all days) of which 55 showed a decreasing mode diameter after growth. The NPF event occurrence was higher in summer than in winter, and events were accompanied with air mass back trajectories crossing over the Eastern Mediterranean. The mean nucleation rate (J10) was 1.9 ± 1.1 cm−3 s−1 (monthly mean 1.6–2.7 cm−3 s−1) and the mean growth rate was 6.8 ± 3.1 nm/h (4.1–8.8 nm/h). The formation rate did not have a seasonal pattern, but the growth rate had a seasonal variation (maximum around August and minimum in winter). The mean condensable vapor source rate was 4.1 ± 2.2 × 105 molecules/cm3 s (2.6–6.9 × 105 molecules/cm3 s) with a seasonal pattern (maximum around August). The mean condensation sink was 8.9 ± 3.3 × 10−3 s−1 (6.4–14.8 × 10−3 s−1) with a seasonal pattern (minimum around June and maximum in winter).


2020 ◽  
Author(s):  
Vitus Besel ◽  
Jakub Kubečka ◽  
Theo Kurtén ◽  
Hanna Vehkamäki

<div> <p>The bulk of aerosol particles in the atmosphere are formed by gas-to-particle nucleation (Merikanto et al., 2009). However, the exact process of single molecules forming cluster, which subsequently can grow into particles, remains largely unknown. Recently, sulfuric acid has been identified to play a key role in this new particle formation enhanced by other compounds such as organic acids (Zhang, 2010) or ammonia (Anttila et al., 2005). To identify the characteristics of cluster formation and nucleation involving sulfuric acid and ammonia in neutral, positive and negative modes, we conducted a computational study. We used a layered approach for configurational sampling of the molecular clusters starting from utilizing a genetic algorithm in order to explore the whole potential energy surface (PES) with all plausible geometrical minima, however, with very unreliable energies. The structures were further optimized with a semi-empirical method and, then, at the ωB97X-D DFT level of theory. After each step, the optimized geometries were filtered to obtain the global minimum configuration. Further, a high level of theory (DLPNO-CCSD(T)) was used for obtaining the electronic energies, in addition to performing DFT frequency analysis, to calculate the Gibbs free energies of formation. These were passed to the Atmospheric Cluster Dynamics Code (ACDC) (McGrath et al., 2012) for studying the evolution of cluster populations. We determined the global minima for the following sulfuric acid - ammonia clusters: (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(NH<sub>3</sub>)<sub>n</sub> with m=n, m=n+1 and n=m+1 for neutral clusters, (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(HSO<sub>4</sub>)<sup>−</sup>(NH<sub>3</sub>)<sub>n</sub> with m=n and n=m+1 for positively charged clusters, and (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(NH<sub>4</sub>)<sup>+</sup>(NH<sub>3</sub>)<sub>n</sub> with m=n and m=n+1 for negatively charged clusters. Further, we present the formation rates, steady state concentrations and fluxes of these clusters calculated using ACDC and discuss how a new configurational sampling procedure, more precise quantum chemistry methods and parameters, such as symmetry and a quasiharmonic approach, impact these ACDC results in comparison to previous studies.</p> </div><div> <p><em>References:<br></em><em>J. Merikanto, D. V. Spracklen, G. W. Mann, S. J. Pickering, and K. S. Carslaw (2009). Atmos. Chem.  Phys., 9, 8601-8616. <br>R. Zhang (2010). Science, 328, 1366-1367. <br>T. Anttila, H. Vehkamäki, I. Napari, M. Kulmala (2005). Boreal Env. Res., 10, 523. <br>M.J. McGrath, T. Olenius, I.K. Ortega, V. Loukonen, P.  Paasonen, T. Kurten, M. Kulmala (2012). Atmos. Chem. Phys., 12, 2355. <br></em></p> </div>


Sign in / Sign up

Export Citation Format

Share Document