scholarly journals Mobile-platform measurement of air pollutant concentrations in California: performance assessment, statistical methods for evaluating spatial variations, and spatial representativeness

2020 ◽  
Vol 13 (6) ◽  
pp. 3277-3301
Author(s):  
Paul A. Solomon ◽  
Dena Vallano ◽  
Melissa Lunden ◽  
Brian LaFranchi ◽  
Charles L. Blanchard ◽  
...  

Abstract. Mobile-platform measurements provide new opportunities for characterizing spatial variations in air pollution within urban areas, identifying emission sources, and enhancing knowledge of atmospheric processes. The Aclima, Inc., mobile measurement and data acquisition platform was used to equip four Google Street View cars with research-grade instruments, two of which were available for the duration of this study. On-road measurements of air quality were made during a series of sampling campaigns between May 2016 and September 2017 at high (i.e., 1 s) temporal and spatial resolution at several California locations: Los Angeles, San Francisco, and the northern San Joaquin Valley (including nonurban roads and the cities of Tracy, Stockton, Manteca, Merced, Modesto, and Turlock). The results demonstrate that the approach is effective for quantifying spatial variations in air pollutant concentrations over measurement periods as short as 2 weeks. Measurement accuracy and precision are evaluated using results of weekly performance checks and periodic audits conducted through the sampler inlets, which show that research instruments located within stationary vehicles are capable of reliably measuring nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3), methane (CH4), black carbon (BC), and particle number (PN) concentration, with bias and precision ranging from < 10 % for gases to < 25 % for BC and PN at 1 s time resolution. The quality of the mobile measurements in the ambient environment is examined by comparisons with data from an adjacent (< 9 m) stationary regulatory air quality monitoring site and by paired collocated vehicle comparisons, both stationary and driving. The mobile measurements indicate that United States Environmental Protection Agency (US EPA) classifications of two Los Angeles stationary regulatory monitors' scales of representation are appropriate. Paired time-synchronous mobile measurements are used to characterize the spatial scales of concentration variations when vehicles were separated by < 1 to 10 km. A data analysis approach is developed to characterize spatial variations while limiting the confounding influence of diurnal variability. The approach is illustrated using data from San Francisco, revealing 1 km scale differences in mean NO2 and O3 concentrations up to 117 % and 46 %, respectively, of mean values during a 2-week sampling period. In San Francisco and Los Angeles, spatial variations up to factors of 6 to 8 occur at sampling scales of 100–300 m, corresponding to 1 min averages.

2020 ◽  
Author(s):  
Paul A. Solomon ◽  
Dena Vallano ◽  
Melissa Lunden ◽  
Brian LaFranchi ◽  
Charles L. Blanchard ◽  
...  

Abstract. Mobile platform measurements provide new opportunities for characterizing spatial variations of air pollution within urban areas, identifying emission sources, and enhancing knowledge of atmospheric processes. The Aclima, Inc. mobile measurement and data acquisition platform was used to equip Google Street View cars with research-grade instruments. On-road measurements of air quality were made between May 2016 and September 2017 at high (i.e., 1-second [s]) temporal and spatial resolution at several California locations: Los Angeles, San Francisco, and the northern San Joaquin Valley (including non-urban roads and the cities of Tracy, Stockton, Manteca, Merced, Modesto, and Turlock). The results demonstrate that the approach is effective for quantifying spatial variations of air pollutant concentrations over measurement periods as short as two weeks. Measurement accuracy and precision are evaluated using results of weekly performance checks and periodic audits conducted through the sampler inlets, which show that research instruments in stationary vehicles are capable of reliably measuring nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3), methane (CH4) black carbon (BC), and particle number (PN) concentration with bias and precision ranging from


2021 ◽  
pp. 045
Author(s):  
Jimmy Leyes ◽  
Laure Roussel

La surveillance réglementaire de la qualité de l'air en France est confiée aux associations régionales agréées de surveillance de la qualité de l'air (Aasqa) telles qu'Atmo Hauts-de-France. Elles s'appuient sur une palette d'outils et leur expertise pour mesurer les polluants dans l'air de leur territoire, alerter les populations en cas d'épisode de pollution, répondre aux exigences réglementaires de surveillance définies au niveau européen, tout en prenant en compte les spécificités régionales. Cet article présente les différents outils utilisés par les Aasqa, et plus particulièrement Atmo Hauts-de-France, pour surveiller et estimer la qualité de l'air. L'association régionale opère ainsi un ensemble de stations de mesures fixes et mobiles pour suivre en continu les concentrations de polluants réglementés ou non sur son territoire, et dispose d'outils de modélisation pour évaluer et prévoir la qualité de l'air en tous points de la région. Cet article présente également certains des paramètres météorologiques qui influencent la qualité de l'air de la région Hauts-de-France, particulièrement concernée par les épisodes de pollution aux particules. Regulatory air quality monitoring in France is performed by government-approved non-profit organisations called AASQAs, one of which is Atmo Hauts-de-France. These organisations rely on decades of accumulated air quality expertise and use several techniques to measure air pollutant concentrations, inform the public when pollutant levels are unhealthy, and comply with E.U. air quality monitoring regulations. This paper gives an overview of the tools used by AASQAs, and more particularly by Atmo Hauts-de-France, to monitor and forecast air quality. The year-round continuous monitoring of air pollutant levels at fixed sites is supplemented by short-term measurements made with fully-equipped vehicles or trailers and by modelling tools that forecast air quality and estimate pollutant levels where there are no measurements. AASQAs study pollutants which ambient concentrations are regulated by European air quality standards as well as other pollutants which are not regulated in this way. This work also discusses some of the meteorological factors, that affect air quality in the region Hauts-de-France, which is heavily impacted by particulate matter pollution.


2019 ◽  
Vol 19 (12) ◽  
pp. 8209-8228 ◽  
Author(s):  
Min Zhong ◽  
Eri Saikawa ◽  
Alexander Avramov ◽  
Chen Chen ◽  
Boya Sun ◽  
...  

Abstract. Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, where the capital city of Nepal is located. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and analyzed the corresponding impacts on regional air quality. First, we estimated the on-road vehicle emissions in the valley using the International Vehicle Emissions (IVE) model with local emissions factors and the latest available data for vehicle registration. We also identified the locations of the brick kilns in the Kathmandu Valley and developed an emissions inventory for these kilns using emissions factors measured during the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) field campaign in April 2015. Our results indicate that the commonly used global emissions inventory, the Hemispheric Transport of Air Pollution (HTAP_v2.2), underestimates particulate matter emissions from vehicles in the Kathmandu Valley by a factor greater than 100. HTAP_v2.2 does not include the brick sector and we found that our sulfur dioxide (SO2) emissions estimates from brick kilns are comparable to 70 % of the total SO2 emissions considered in HTAP_v2.2. Next, we simulated air quality using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for April 2015 based on three different emissions scenarios: HTAP only, HTAP with updated vehicle emissions, and HTAP with both updated vehicle and brick kilns emissions. Comparisons between simulated results and observations indicate that the model underestimates observed surface elemental carbon (EC) and SO2 concentrations under all emissions scenarios. However, our updated estimates of vehicle emissions significantly reduced model bias for EC, while updated emissions from brick kilns improved model performance in simulating SO2. These results highlight the importance of improving local emissions estimates for air quality modeling. We further find that model overestimation of surface wind leads to underestimated air pollutant concentrations in the Kathmandu Valley. Future work should focus on improving local emissions estimates for other major and underrepresented sources (e.g., crop residue burning and garbage burning) with a high spatial resolution, as well as the model's boundary-layer representation, to capture strong spatial gradients of air pollutant concentrations.


2020 ◽  
Author(s):  
Zhiyuan Li ◽  
Steve Hung Lam Yim ◽  
Kin-Fai Ho

&lt;p&gt;Land use regression (LUR) models estimate air pollutant concentrations for areas without air quality measurements, which provides valuable information for exposure assessment and epidemiological studies. In the present study, we developed LUR models for ambient air pollutants in Hong Kong, China, a typical high-density and high-rise city. Air quality measurements at sixteen air quality monitoring stations, operated by the Hong Kong Environmental Protection Department, were collected. Moreover, five categories of predictor variables, including population distribution, traffic emissions, land use variables, urban/building morphology, and meteorological parameters, were employed to establish the LUR models of various air pollutants. Then the spatial distribution of air pollutant concentrations at 1 km &amp;#215; 1 km grid cells were plotted. Taking fine particle (PM2.5) as an example, the developed LUR model explained 89% of variability of PM2.5 concentrations, with a leave-one-out-cross-validation R2 of 0.64. LUR modelling results for other air pollutants will be presented. In addition, further improvements on the development of LUR models will be discussed. This study can help to assess long-term exposures to air pollutants for high-density and high-rise urban areas like Hong Kong.&lt;/p&gt;


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1072
Author(s):  
Akiyoshi Ito ◽  
Shinji Wakamatsu ◽  
Tazuko Morikawa ◽  
Shinji Kobayashi

The aim of this paper is to obtain information that will contribute to measures and research needed to further improve the air quality in Japan. The trends and characteristics of air pollutant concentrations, especially PM2.5, ozone, and related substances, over the past 30 years, are analyzed, and the relationships between concentrations and emissions are discussed quantitatively. We found that PM2.5 mass concentrations have decreased, with the largest reduction in elemental carbon (EC) as the PM2.5 component. The concentrations of organic carbon (OC) have not changed significantly compared to other components, suggesting that especially VOC emissions as precursors need to be reduced. In addition, the analysis of the differences in PM2.5 concentrations between the ambient and the roadside showed that further research on non-exhaust particles is needed. For NOx and SO2, there is a linear relationship between domestic anthropogenic emissions and atmospheric concentrations, indicating that emission control measures are directly effective in the reduction in concentrations. Also, recent air pollution episodes and the effect of reduced economic activity, as a consequence of COVID-19, on air pollution concentrations are summarized.


2018 ◽  
Author(s):  
Min Zhong ◽  
Eri Saikawa ◽  
Alexander Avramov ◽  
Chen Chen ◽  
Boya Sun ◽  
...  

Abstract. Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, where the capital city of Nepal is located. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and analyzed the corresponding impacts on regional air quality. First, we estimated the on-road vehicle emissions in the valley using the International Vehicle Emission (IVE) model with local emission factors and the latest available data for vehicle registration. We also identified the locations of the brick kilns in the Kathmandu Valley and developed an emissions inventory for these kilns using emission factors measured during the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) field campaign in April 2015. Our results indicate that the commonly-used global emissions inventory, the Hemispheric Transport of Air Pollution (HTAP_v2.2), underestimates particulate matter emissions from vehicles in the Kathmandu Valley by a factor greater than 100. In addition, brick kilns account for nearly 70 % of total sulfur dioxide (SO2) emissions from all sectors considered in HTAP_v2.2. Next, we simulated air quality using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for April 2015 based on three different emission scenarios: HTAP only, HTAP with updated vehicle emissions, and HTAP with both updated vehicle and brick kilns emissions. Comparisons between simulated results and observations indicate that the model underestimates observed surface elemental carbon (EC) and SO2 concentrations under all emissions scenarios. However, our updated estimates of vehicle emissions significantly reduced model bias for EC, while updated emissions from brick kilns improved model performance in simulating SO2. These results highlight the importance of improving local emissions estimates for air quality modeling. We further find that model overestimation of surface wind leads to underestimated air pollutant concentrations in the Kathmandu Valley. Future work should focus on improving local emissions estimates for other major and underrepresented sources (e.g., crop residue burning and garbage burning) with a high spatial resolution, as well as the model's boundary-layer representation, to capture strong spatial gradients of air pollutant concentrations.


Sign in / Sign up

Export Citation Format

Share Document