scholarly journals Ground mobile observation system for measuring multisurface microwave emissivity

2021 ◽  
Author(s):  
Wenying He ◽  
Hongbin Chen ◽  
Yuejian Xuan ◽  
Jun Li ◽  
Minzheng Duan

Abstract. Large microwave surface emissivities with a highly heterogeneous distribution make it challenging to use satellite microwave data to retrieve precipitation and to be assimilated into numerical models over land. To better understand the microwave emissivity over land surfaces, we designed and established a ground observation system for the in situ observation of microwave emissivities over several typical surfaces. The major components of the system include a dual-frequency polarized ground microwave radiometer, a mobile observation platform, and auxiliary sensors to measure the surface temperature and soil temperature and moisture; moreover, observation fields are designed comprising five different land surfaces. Based on the observed data from the mobile system, we preliminarily investigated the variations in the surface microwave emissivity over different land surfaces. The results show that the horizontally polarized emissivity is more sensitive to land surfaces than is the vertically polarized emissivity: the former decreases to 0.75 over cement and increases to 0.90 over sand and bare soil and up to 0.97 over grass. The corresponding emissivity polarization difference is obvious over water (> 0.3) and cement (approximately 0.25) but reduces to 0.1 over sand and 0.05 over bare soil and almost 0.01 or close to zero over grass; this trend is similar to that of the Tb polarization difference. At different elevation angles, the horizontally/vertically polarized emissivities over land surfaces obviously increase/slightly decrease with increasing elevation angle but exhibit the opposite trend over water.

2021 ◽  
Vol 14 (11) ◽  
pp. 7069-7078
Author(s):  
Wenying He ◽  
Hongbin Chen ◽  
Yuejian Xuan ◽  
Jun Li ◽  
Minzheng Duan ◽  
...  

Abstract. Large microwave surface emissivities with a highly heterogeneous distribution and the relatively small hydrometeor signal over land make it challenging to use satellite microwave data to retrieve precipitation and to be assimilated into numerical models. To better understand the microwave emissivity over land surfaces, we designed and established a ground observation system for the in situ observation of microwave emissivities over several typical surfaces. The major components of the system include a dual-frequency polarized ground microwave radiometer, a mobile observation platform, and auxiliary sensors to measure the surface temperature and soil temperature and moisture; moreover, observation fields are designed comprising five different land surfaces. Based on the observed data from the mobile system, we preliminarily investigated the variations in the surface microwave emissivity over different land surfaces. The results show that the horizontally polarized emissivity is more sensitive to land surface variability than the vertically polarized emissivity is: the former decreases to 0.75 over cement and increases to 0.90 over sand and bare soil and up to 0.97 over grass. The corresponding emissivity polarization difference is obvious over water (>0.3) and cement (approximately 0.25) but reduces to 0.1 over sand and 0.05 over bare soil and almost 0.01 or close to zero over grass; this trend is similar to that of the Tb polarization difference. At different elevation angles, the horizontally/vertically polarized emissivities over land surfaces obviously increase/slightly decrease with increasing elevation angles but exhibit the opposite trend over water.


Polar Biology ◽  
2021 ◽  
Author(s):  
Philipp Neitzel ◽  
Aino Hosia ◽  
Uwe Piatkowski ◽  
Henk-Jan Hoving

AbstractObservations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusaAglantha digitaleand appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores,Beroespp.,Euplokamissp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.


2021 ◽  
Author(s):  
Xiaocheng Liu ◽  
Chenming Zhang ◽  
Yue Liu ◽  
David Lockington ◽  
Ling Li

<p>Estimation of evaporation rates from soils is significant for environmental, hydrological, and agricultural purposes. Modeling of the soil surface resistance is essential to estimate the evaporation rates from bare soil. Empirical surface resistance models may cause large deviations when applied to different soils. A physically-based soil surface model is developed to calculate the surface resistance, which can consider evaporation on the soil surface when soil is fully saturated and the vapor flow below the soil surface after dry layer forming on the top. Furthermore, this physically-based expression of the surface resistance is added into a numerical model that considers the liquid water transport, water vapor transport, and heat transport during evaporation. The simulation results are in good agreement with the results from six soil column drying experiments.  This numerical model can be applied to predict or estimate the evaporation rate of different soil and saturation at different depths during evaporation.</p>


1995 ◽  
Vol 81 (6) ◽  
pp. 607-612 ◽  
Author(s):  
Takayuki NARUSHIMA ◽  
Naoki KIKUCHI ◽  
Makoto MARUYAMA ◽  
Haruo ARASHI ◽  
Yuichiro NISHINA ◽  
...  

2021 ◽  
Author(s):  
Jean-Michel Lellouche ◽  
Romain Bourdalle-Badie ◽  
Eric Greiner ◽  
Gilles Garric ◽  
Angelique Melet ◽  
...  

<p>The GLORYS12V1 system is a global eddy-resolving physical ocean and sea ice reanalysis at 1/12° resolution covering the 1993-present altimetry period, designed and implemented in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS). All the essential ocean physical variables from this reanalysis are available with free access through the CMEMS data portal.</p><p>The GLORYS12V1 reanalysis is based on the current CMEMS global real-time forecasting system, apart from a few specificities that are detailed in this manuscript. The model component is the NEMO platform driven at the surface by atmospheric conditions from the ECMWF ERA-Interim reanalysis. Ocean observations are assimilated by means of a reduced-order Kalman filter. Along track altimeter sea level anomaly, satellite sea surface temperature and sea ice concentration data and in situ temperature and salinity (T/S) vertical profiles are jointly assimilated. A 3D-VAR scheme provides an additional correction for the slowly-evolving large-scale biases in temperature and salinity.</p><p>The performance of the reanalysis is first addressed in the space of the assimilated observations and shows a clear dependency on the time-dependent in situ observation system, which is intrinsic to most reanalyses. The general assessment of GLORYS12V1 highlights a level of performance at the state-of-the-art and the reliability of the system to correctly capture the main expected climatic interannual variability signals for ocean and sea ice, the general circulation and the inter-basins exchanges. In terms of trends, GLORYS12V1 shows a higher than observed  warming trend together with a lower than observed global mean sea level rise.</p><p>Comparisons made with an experiment carried out on the same platform without assimilation show the benefit of data assimilation in controlling water masses properties and their low frequency variability. Examination of the deep signals below 2000 m depth shows that the reanalysis does not suffer from artificial signals even in the pre-Argo period.</p><p>Moreover, GLORYS12V1 represents particularly well the small-scale variability of surface dynamics and compares well with independent (non-assimilated) data. Comparisons made with a twin experiment carried out at ¼° resolution allows characterizing and quantifying the strengthened contribution of the 1/12° resolution onto the downscaled dynamics.</p><p>In conclusion, GLORYS12V1 provides a reliable physical ocean state for climate variability and supports applications such as seasonal forecasts. In addition, this reanalysis has strong assets to serve regional applications and should provide relevant physical conditions for applications such as marine biogeochemistry. In a near future, GLORYS12V1 will be maintained to be as close as possible to real time and could therefore provide a relevant reference statistical framework for many operational applications.</p>


1999 ◽  
Vol 3 (2) ◽  
pp. 247-258 ◽  
Author(s):  
G. Boulet ◽  
A. Chehbouni ◽  
I. Braud ◽  
M. Vauclin

Abstract. Two-layer parameterisation of the surface energy budget proves to be realistic for sparse but homogeneously distributed vegetation. For semi-arid land surfaces however, sparse vegetation is usually interspersed by large patches of unshaded bare soil which may interact directly with the atmosphere with little interference with the vegetation. Therefore such surfaces might not be realistically represented by a two-layer parameterisation. The objective of this study is to investigate the issue of representing water and energy transfer processes in arid and semi-arid regions. Two different surface schemes, namely the classic two layer (one-compartment) approach and a two adjacent compartment ("mosaic") approach are used. The performance of both schemes is documented using data sets collected over two sparsely vegetated surfaces in the San Pedro river basin: homogeneously distributed grassland and heterogeneously distributed shrubs. In the latter case the mosaic scheme seems to be more realistic given the quality of the temperature estimates. But no clear statement can be made on the efficiency of both schemes for the total fluxes. Over each site, we investigate the possibility of artificially modifying some of the surface parameters in order to get the surface fluxes simulated by the one-compartment scheme to reproduce the two-compartment ones. The "cost" associated with this process in terms of surface temperature estimates is eventually discussed.


2016 ◽  
Vol 97 (10) ◽  
pp. 1909-1928 ◽  
Author(s):  
Tuukka Petäjä ◽  
Ewan J. O’Connor ◽  
Dmitri Moisseev ◽  
Victoria A. Sinclair ◽  
Antti J. Manninen ◽  
...  

Abstract During Biogenic Aerosols—Effects on Clouds and Climate (BAECC), the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the Second ARM Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to the Station for Measuring Ecosystem–Atmosphere Relations II (SMEAR II), one of the world’s most comprehensive surface in situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions, and an extensive suite of parameters relevant to atmosphere–biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in situ SMEAR II observations allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol–cloud interactions and cloud-to-precipitation processes in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 917 ◽  
Author(s):  
Shimizu ◽  
Kobayashi ◽  
Vorholt ◽  
Yang

: To investigate the underlying mechanism of the effects of surface texturing on lubricated sliding friction in the metal forming operation, an in-situ observation system using transparent silica glass dies and a high speed recording camera was newly developed. To correlate the dimensional parameters of micro-dimple textured structures and tribological properties in the metal forming operation, the in-situ observation was performed during bending with the ironing process of the stainless steel sheet with a thickness of 0.1 mm. The lubrication behavior were compared between the different lubricant viscosities and the micro-dimple textures with different diameters of 10 µm, 50 µm, 100 µm fabricated by using femto-/pico-second laser processing. As a result, the textured die with dimple diameters of 10 µm and 50 µm showed the lubricant flow transferred from one to the other dimples owing to the lubricant reservoir effect, while that of 100 µm indicated the less supply of the lubricant. However, the textured die with a dimple diameter of 10 µm demonstrated higher ironing force than that of 50 µm, due to the severe adhesion of work materials inside the dimple structures. Based on these experimental findings, the dimple size dependencies on lubricant reservoirs effects and the generation of the hydrodynamic pressure were discussed by correlating with the in-situ observation results, a fluid-flow analysis and a laminar two-phase flow analysis using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document