scholarly journals Comparison of airborne measurements of NO, NO<sub>2</sub>, HONO, NO<sub>y</sub> and CO during FIREX-AQ

2022 ◽  
Author(s):  
Ilann Bourgeois ◽  
Jeff Peischl ◽  
J. Andrew Neuman ◽  
Steven S. Brown ◽  
Hannah M. Allen ◽  
...  

Abstract. We present a comparison of fast-response instruments installed onboard the NASA DC-8 aircraft that measured nitrogen oxides (NO and NO2), nitrous acid (HONO), total reactive odd nitrogen (measured both as the total (NOy) and from the sum of individually measured species (SNOy)) and carbon monoxide (CO) in the troposphere during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. By targeting smoke from summertime wildfires, prescribed fires and agricultural burns across the continental United States, FIREX-AQ provided a unique opportunity to investigate measurement accuracy in concentrated plumes where hundreds of species coexist. Here, we compare NO measurements by chemiluminescence (CL) and laser induced fluorescence (LIF); NO2 measurements by CL, LIF and cavity enhanced spectroscopy (CES); HONO measurements by CES and iodide-adduct chemical ionization mass spectrometry (CIMS); and CO measurements by tunable diode laser absorption spectrometry (TDLAS) and integrated cavity output spectroscopy (ICOS). Additionally, total NOy measurements using the CL instrument were compared with SNOy (= NO + NO2 + HONO + nitric acid (HNO3) + acyl peroxy nitrates (APNs) + submicron particulate nitrate (pNO3)). The aircraft instrument intercomparisons demonstrate the following: 1) NO measurements by CL and LIF agreed well within instrument uncertainties, but with potentially reduced time response for the CL instrument; 2) NO2 measurements by LIF and CES agreed well within instrument uncertainties, but CL NO2 was on average 10 % higher; 3) CES and CIMS HONO measurements were highly correlated in each fire plume transect, but the correlation slope of CES vs. CIMS for all 1 Hz data during FIREX-AQ was 1.8, which we attribute to a reduction in the CIMS sensitivity to HONO in high temperature environments; 4) NOy budget closure was demonstrated for all flights within the combined instrument uncertainties of 25 %. However, we used a fluid dynamic flow model to estimate that average pNO3 sampling fraction through the NOy inlet in smoke was variable from one flight to another and ranged between 0.36 and 0.99, meaning that approximately 0–24 % on average of the total measured NOy in smoke may have been unaccounted for and may be due to unmeasured species such as organic nitrates; 5) CO measurements by ICOS and TDLAS agreed well within combined instrument uncertainties, but with a systematic offset that averaged 2.87 ppbv; and 6) integrating smoke plumes followed by fitting the integrated values of each plume improved the correlation between independent measurements.

2002 ◽  
Author(s):  
Alan Fried ◽  
Bryan P. Wert ◽  
James G. Walega ◽  
Dirk A. Richter ◽  
William T. Potter

2020 ◽  
Vol 98 (8) ◽  
pp. 403-407
Author(s):  
Min Zhang ◽  
Tao Hu ◽  
Changyan Sun ◽  
Wenjun Li ◽  
Zhidong Chang

A new Schiff base 2-hydroxy-5-[(2,7-dihydroxy-1-naphthyl)methylideneamino]benzoic acid (HNMB) has been designed and synthesized. HNMB was characterized by Fourier-transform infrared spectroscopy (FTIR), electrospray ionization mass spectrometry (ESI–MS), nuclear magnetic resonance spectrometry (NMR), and single crystal X-ray diffraction. Fluorescence spectra show that HNMB could be used as a “turn-on” probe to detect ClO− ions from other anions in DMSO/H2O (v/v = 1:1) with a fast response time of 10 s and a low detection limit of 3.6 × 10−7 mol/L. Moreover, the probe could work in a wide pH range of 4–10. The detection mechanism was studied by ESI–MS.


Author(s):  
Joseph R. Comparato ◽  
Karen L. Ringel ◽  
Daniel L. Heath

With immersive visualization the engineer has the means for vividly understanding problem causes and discovering opportunities to improve design. Software can generate an interactive world in which collaborators experience the results of complex mathematical simulations such as computational fluid dynamic (CFD) modeling. Such software, while providing unique benefits over traditional visualization techniques, presents special development challenges. The visualization of large quantities of data interactively requires both significant computational power and shrewd data management. On the computational front, commodity hardware is outperforming large workstations in graphical quality and frame rates. Also, 64-bit commodity computing shows promise in enabling interactive visualization of large datasets. Initial interactive transient visualization methods and examples are presented, as well as development trends in commodity hardware and clustering. Interactive, immersive visualization relies on relevant data being stored in active memory for fast response to user requests. For large or transient datasets, data management becomes a key issue. Techniques for dynamic data loading and data reduction are presented as means to increase visualization performance.


Author(s):  
Julian Unterluggauer ◽  
Eduard Doujak ◽  
Christian Bauer

Depending on a dynamical energy market dominated by the influence of volatile energies, the operators of hydro-power plants are forced to extend the operating range of their hydraulic machines to stay competitive. High flexibility towards low-load, a rising number of start-ups and fast response times are required for better control of the electrical grid. The major downside of these operating regions is that pressure pulsations, which are induced by the means of flow phenomena, lead to higher fatigue damage regarding the runner. Therefore, site measurements in combination with numerical methods can be used to gain a deeper understanding of the runner lifetime. This paper presents a numerical approach to understand the critical operation zones and access fatigue damage, including steady state, unsteady and transient computational fluid dynamic (CFD) one-way coupled with a transient finite element method (FEM).


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 88 ◽  
Author(s):  
Rui Li ◽  
Xiaotong Jiang ◽  
Xinfeng Wang ◽  
Tianshu Chen ◽  
Lin Du ◽  
...  

Semivolatile organic nitrates (SVONs) contribute a large proportion of total organic nitrates and play an important role in the tropospheric chemistry. However, the composition and concentrations of SVONs in the atmosphere remain unclear due to the lack of reliable analytical techniques for specific organic nitrates. In this study, a method based on gas chromatography and electron ionization–mass spectrometry was developed to detect ambient SVONs that were collected via polyurethane foam disk enrichment. Three SVONs were identified in the semivolatile samples from urban Jinan during spring based on the characteristic fragment ions of [NO2]+ and [CH2NO3]+ and the characteristic fragment loss of NO2 and NO3: 1-pentyl nitrate (molecular weight [MW] = 133), 4-hydroxy-isoprene nitrate (MW = 147), and (3,4)-di-hydroxy-isoprene nitrate (MW = 163). The latter two isoprene nitrates were rarely detected in the real atmosphere in previous studies. The contents of 1-pentyl nitrate, 4-hydroxy-isoprene nitrate, and (3,4)-di-hydroxy-isoprene nitrate were roughly quantified based on the standard of 1-pentyl nitrate, with a detection limit of 50 μg L−1. In addition, Fourier transform infrared spectrometry was used to determine the total SVONs content. The average concentrations of 1-pentyl nitrate, 4-hydroxy-isoprene nitrate, (3,4)-di-hydroxy-isoprene nitrate, and total SVONs in Jinan during spring were 20.2 ± 7.2, 13.2 ± 7.2, 36.5 ± 8.4, and 380.0 ± 190.8 ng m−3, respectively. The three identified SVONs contributed only 20.2 ± 5.5% to the total SVONs, which suggests that some unidentified SVONs are present in the ambient atmosphere and that studies with improved or advanced analytical techniques will be required to identify them.


1998 ◽  
Author(s):  
Kotaro Akashi ◽  
Kaori Inoue ◽  
Masayuki Adachi ◽  
Kozo Ishida ◽  
Johannes Villinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document